ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature effects on phase transitions in chiral magnets

163   0   0.0 ( 0 )
 نشر من قبل Kostiantyn Yershov V.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Periodical equilibrium states of magnetization exist in chiral ferromagnetic films, if the constant of antisymmetric exchange (Dzyaloshinskii-Moriya interaction) exceeds some critical value. Here, we demonstrate that this critical value can be significantly modified in curved film. The competition between symmetric and antisymmetric exchange interactions in a curved film can lead to a new type of domain wall which is inclined with respect to the cylinder axis. The wall structure is intermediate between Bloch and Neel ones. The exact analytical solutions for phase boundary curves and the new domain wall are obtained.

قيم البحث

اقرأ أيضاً

71 - Lipeng Jin , Bin Xi , Jia-Wei Mei 2021
Magnetic skyrmions are stable topological spin textures with significant potential for spintronics applications. Merons, as half-skyrmions, have been discovered by recent observations, which have also raised the upsurge of research. The main purpose of this work is to study further the lattice forms of merons and skyrmions. We study a classical spin model with Dzyaloshinskii-Moriya interaction, easy-axis, and in-plane magnetic anisotropies on the honeycomb lattice via Monte Carlo simulations. This model could also describe the low-energy behaviors of a two-component bosonic model with a synthetic spin-orbit coupling in the deep Mott insulating region or two-dimensional materials with strong spin-orbit coupling. The results demonstrate the emergence of different sizes of spiral phases, skyrmion and vortex superlattice in absence of magnetic field, furthered the emergence of field-induced meron and skyrmion superlattice. In particular, we give the simulated evolution of the spin textures driven by the magnetic field, which could further reveal the effect of the magnetic field for inducing meron and skyrmion superlattice.
128 - Naoya Arakawa 2017
Chiral magnets are magnetically ordered insulators having spin scalar chirality, and magnons of chiral magnets have been poorly understood. We study the magnon dispersion and specific heat for four chiral magnets with Q=0 on the pyrochlore lattice. T his study is based on the linear-spin-wave approximation for the S=1/2 effective Hamiltonian consisting of two kinds of Heisenberg interaction and two kinds of Dzyaloshinsky-Moriya interaction. We show that the three-in-one-out type chiral magnets possess an optical branch of the magnon dispersion near q=0, in addition to three quasiacoustic branches. This differs from the all-in/all-out type chiral magnets, which possess four quasiacoustic branches. We also show that all four chiral magnets have a gapped magnon energy at q=0, indicating the absence of the Goldstone type gapless excitation. These results are useful for experimentally identifying the three-in-one-out or all-in/all-out type chiral order. Then, we show that there is no qualitative difference in the specific heat among the four magnets. This indicates that the specific heat is not useful for distinguishing the kinds of chiral orders. We finally compare our results with experiments and provide a proposal for the three-in-one-out type chiral magnets.
Superpositions of spin helices can yield topological spin textures, such as two-dimensional vortices and skyrmions, and three-dimensional hedgehogs. Their topological nature and spatial dimensionality depend on the number and relative directions of t he constituent helices. This allows mutual transformation between the topological spin textures by controlling the spatial anisotropy. Here we theoretically study the effect of anisotropy in the magnetic interactions for an effective spin model for chiral magnetic metals. By variational calculations for both cases with triple and quadruple superpositions, we find that the hedgehog lattices, which are stable in the isotropic case, are deformed by the anisotropy, and eventually changed into other spin textures with reduced dimension, such as helices and vortices. We also clarify the changes of topological properties by tracing the real-space positions of magnetic monopoles and antimonopoles as well as the emergent magnetic field generated by the noncoplanar spin textures. Our results suggest possible control of the topological spin textures, e.g., by uniaxial pressure and chemical substitution in chiral materials.
As novel topological phases in correlated electron systems, we have found two examples of non-ferromagnetic states that exhibit a large anomalous Hall effect. One is the chiral spin liquid compound Pr$_{2}$Ir$_{2}$O$_{7}$, which exhibits a spontaneou s Hall effect in a spin liquid state due to spin ice correlation. The other is the chiral antiferromagnets Mn$_{3}$Sn and Mn$_{3}$Ge that exhibit a large anomalous Hall effect at room temperature. The latter shows a sign change of the anomalous Hall effect by a small change in the magnetic field by a few 100 G, which should be useful for various applications. We will discuss that the magnetic Weyl metal states are the origin for such a large anomalous Hall effect observed in both the spin liquid and antiferromagnet that possess almost no magnetization.
Recent developments have led to an explosion of activity on skyrmions in three-dimensional (3D) chiral magnets. Experiments have directly probed these topological spin textures, revealed their nontrivial properties, and led to suggestions for novel a pplications. However, in 3D the skyrmion crystal phase is observed only in a narrow region of the temperature-field phase diagram. We show here, using a general analysis based on symmetry, that skyrmions are much more readily stabilized in two-dimensional (2D) systems with Rashba spin-orbit coupling. This enhanced stability arises from the competition between field and easy-plane magnetic anisotropy and results in a nontrivial structure in the topological charge density in the core of the skyrmions. We further show that, in a variety of microscopic models for magnetic exchange, the required easy-plane anisotropy naturally arises from the same spin-orbit coupling that is responsible for the chiral Dzyaloshinskii-Moriya interactions. Our results are of particular interest for 2D materials like thin films, surfaces, and oxide interfaces, where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to chiral exchange and easy-plane compass anisotropy. Our theory gives a clear direction for experimental studies of 2D magnetic materials to stabilize skyrmions over a large range of magnetic fields down to T=0.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا