ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect-free arbitrary-geometry assembly of mixed-species atom arrays

117   0   0.0 ( 0 )
 نشر من قبل Cheng Sheng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optically trapped mixed-species single atom arrays with arbitrary geometries are an attractive and promising platform for various applications, because tunable quantum systems with multiple components provide extra degrees of freedom for experimental control. Here, we report the first demonstration of two-dimensional $6times4$ dual-species atom assembly with a filling fraction of 0.88 (0.89) for $^{85}$Rb ($^{87}$Rb) atoms. This mixed-species atomic synthetic is achieved via rearranging initially randomly distributed atoms using a sorting algorithm (heuristic heteronuclear algorithm) which is proposed for bottom-up atom assembly with both user-defined geometries and two-species atom number ratios. Our fully tunable hybrid-atom system of scalable advantages is a good starting point for high-fidelity quantum logic, many-body quantum simulation and forming defect-free single molecule arrays.

قيم البحث

اقرأ أيضاً

We report on improvements extending the capabilities of the atom-by-atom assembler described in [Barredo et al., Science 354, 1021 (2016)] that we use to create fully-loaded target arrays of more than 100 single atoms in optical tweezers, starting fr om randomly-loaded, half-filled initial arrays. We describe four variants of the sorting algorithm that (i) allow decrease the number of moves needed for assembly and (ii) enable the assembly of arbitrary, non-regular target arrays. We finally demonstrate experimentally the performance of this enhanced assembler for a variety of target arrays.
Sorting atoms stochastically loaded in optical tweezer arrays via an auxiliary mobile tweezer is an efficient approach to preparing intermediate-scale defect-free atom arrays in arbitrary geometries. However, high filling fraction of atom-by-atom ass emblers is impeded by redundant sorting moves with imperfect atom transport, especially for scaling the system size to larger atom numbers. Here, we propose a new sorting algorithm (heuristic cluster algorithm, HCA) which provides near-fewest moves in our tailored atom assembler scheme and experimentally demonstrate a $5times6$ defect-free atom array with 98.4(7)$%$ filling fraction for one rearrangement cycle. The feature of HCA that the number of moves $N_{m}approx N$ ($N$ is the number of defect sites to be filled) makes the filling fraction uniform as the size of atom assembler enlarged. Our method is essential to scale hundreds of assembled atoms for bottom-up quantum computation, quantum simulation and precision measurement.
D1 magic wavelengths have been predicted for the alkali atoms but are not yet observed to date. We experimentally confirm a D1 magic wavelength that is predicted to lie at 615.87 nm for $^{23}$Na, which we then use to trap and image individual atoms with 80.0(6)% efficiency and without having to modulate the trapping and imaging light intensities. We further demonstrate that the mean loading efficiency remains as high as 74.2(7)% for a 1D array of eight atoms. Leveraging on the absence of trap intensity modulation and lower trap depths afforded by the D1 light, we achieve an order-of-magnitude reduction on the tweezer laser power requirements and a corresponding increase in the scalability of atom arrays. The methods reported here are applicable to all the alkalis, including those that are attractive candidates for dipolar molecule assembly, Rydberg dressing, or are fermionic in nature.
We show that with a purely blue-detuned cooling mechanism we can densely load single neutral atoms into large arrays of shallow optical tweezers. With this ability, more efficient assembly of larger ordered arrays will be possible - hence expanding t he number of particles available for bottom-up quantum simulation and computation with atoms. Using Lambda-enhanced grey molasses on the D1 line of 87Rb, we achieve loading into a single 0.63 mK trap with 89% probability, and we further extend this loading to 100 atoms at 80% probability. The loading behavior agrees with a model of consecutive light-assisted collisions in repulsive molecular states. With simple rearrangement that only moves rows and columns of a 2D array, we demonstrate one example of the power of enhanced loading in large arrays.
We use a co-trapped ion ($^{88}mathrm{Sr}^{+}$) to sympathetically cool and measure the quantum state populations of a memory-qubit ion of a different atomic species ($^{40}mathrm{Ca}^{+}$) in a cryogenic, surface-electrode ion trap. Due in part to t he low motional heating rate demonstrated here, the state populations of the memory ion can be transferred to the auxiliary ion by using the shared motion as a quantum state bus and measured with an average accuracy of 96(1)%. This scheme can be used in quantum information processors to reduce photon-scattering-induced error in unmeasured memory qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا