ﻻ يوجد ملخص باللغة العربية
Purpose: An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T2 mapping from single-shot OverLapping-Echo Detachment (OLED) planar imaging. Methods: The training dataset was obtained from simulations carried out on SPROM software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponded T2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T2 mapping from simulation and in vivo human brain data. Results: Though the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperformed the echo-detachment-based method. Reliable T2 mapping was achieved within tens of milliseconds after the network had been trained while the echo-detachment-based OLED reconstruction method took minutes. Conclusion: The proposed method will greatly facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and ResNet has the potential to reconstruct images from complex MRI sequence efficiently.
Data-driven learning algorithm has been successfully applied to facilitate reconstruction of medical imaging. However, real-world data needed for supervised learning are typically unavailable or insufficient, especially in the field of magnetic reson
Multi-shot echo planar imaging (msEPI) is a promising approach to achieve high in-plane resolution with high sampling efficiency and low T2* blurring. However, due to the geometric distortion, shot-to-shot phase variations and potential subject motio
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution. Recently proposed HS pansharpening methods
We propose a novel approach to recovering the translucent objects from a single time-of-flight (ToF) depth camera using deep residual networks. When recording the translucent objects using the ToF depth camera, their depth values are severely contami
State-of-the-art (SoTA) models have improved the accuracy of object detection with a large margin via a FP (feature pyramid). FP is a top-down aggregation to collect semantically strong features to improve scale invariance in both two-stage and one-s