ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning the Ising Model Near Criticality

63   0   0.0 ( 0 )
 نشر من قبل Alan Morningstar
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well established that neural networks with deep architectures perform better than shallow networks for many tasks in machine learning. In statistical physics, while there has been recent interest in representing physical data with generative modelling, the focus has been on shallow neural networks. A natural question to ask is whether deep neural networks hold any advantage over shallow networks in representing such data. We investigate this question by using unsupervised, generative graphical models to learn the probability distribution of a two-dimensional Ising system. Deep Boltzmann machines, deep belief networks, and deep restricted Boltzmann networks are trained on thermal spin configurations from this system, and compared to the shallow architecture of the restricted Boltzmann machine. We benchmark the models, focussing on the accuracy of generating energetic observables near the phase transition, where these quantities are most difficult to approximate. Interestingly, after training the generative networks, we observe that the accuracy essentially depends only on the number of neurons in the first hidden layer of the network, and not on other model details such as network depth or model type. This is evidence that shallow networks are more efficient than deep networks at representing physical probability distributions associated with Ising systems near criticality.



قيم البحث

اقرأ أيضاً

Recent advances in deep learning and neural networks have led to an increased interest in the application of generative models in statistical and condensed matter physics. In particular, restricted Boltzmann machines (RBMs) and variational autoencode rs (VAEs) as specific classes of neural networks have been successfully applied in the context of physical feature extraction and representation learning. Despite these successes, however, there is only limited understanding of their representational properties and limitations. To better understand the representational characteristics of RBMs and VAEs, we study their ability to capture physical features of the Ising model at different temperatures. This approach allows us to quantitatively assess learned representations by comparing sample features with corresponding theoretical predictions. Our results suggest that the considered RBMs and convolutional VAEs are able to capture the temperature dependence of magnetization, energy, and spin-spin correlations. The samples generated by RBMs are more evenly distributed across temperature than those generated by VAEs. We also find that convolutional layers in VAEs are important to model spin correlations whereas RBMs achieve similar or even better performances without convolutional filters.
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic pha ses in the quasiperiodic $q$-state Potts model in $2+1d$. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of $q$, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be $ u=1$, saturating a modified version of the Harris-Luck criterion.
56 - M. Pasquini , M. Serva 2000
A disordered spin glass model where both static and dynamical properties depend on macroscopic magnetizations is presented. These magnetizations interact via random couplings and, therefore, the typical quenched realization of the system exhibit a ma croscopic frustration. The model is solved by using a revisited replica approach, and the broken symmetry solution turns out to coincide with the symmetric solution. Some dynamical aspects of the model are also discussed, showing how it could be a useful tool for describing some properties of real systems as, for example, natural ecosystems or human social systems.
The zero-temperature critical state of the two-dimensional gauge glass model is investigated. It is found that low-energy vortex configurations afford a simple description in terms of gapless, weakly interacting vortex-antivortex pair excitations. A linear dielectric screening calculation is presented in a renormalization group setting that yields a power-law decay of spin-wave stiffness with distance. These properties are in agreement with low-temperature specific heat and spin-glass susceptibility data obtained in large-scale multi-canonical Monte Carlo simulations.
Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا