ﻻ يوجد ملخص باللغة العربية
We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particles observables using a quantum stochastic calculus approach. We set the mass of the particle to equal $m = m_{0} epsilon$, the reduced Planck constant to equal $hbar = epsilon$ and the cutoff frequency to equal $Lambda = E_{Lambda}/epsilon$, where $m_0$ and $E_{Lambda}$ are positive constants, so that the particles de Broglie wavelength and the largest energy scale of the bath are fixed as $epsilon to 0$. We study the limit as $epsilon to 0$ of the rescaled model and derive a limiting equation for the (slow) particles position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.
Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation tim
We investigate the dynamics of quantum particles in a ratchet potential subject to an ac force field. We develop a perturbative approach for weak ratchet potentials and force fields. Within this approach, we obtain an analytic description of dc curre
A Brownian particle in an ideal quantum gas is considered. The mean square displacement (MSD) is derived. The Bose-Einstein or Fermi-Dirac distribution, other than the Maxwell-Boltzmann distribution, provides a different stochastic force compared wit
We investigate piecewise-linear stochastic models as with regards to the probability distribution of functionals of the stochastic processes, a question which occurs frequently in large deviation theory. The functionals that we are looking into in de
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson-Gaudin equations in the thermod