ﻻ يوجد ملخص باللغة العربية
A Brownian particle in an ideal quantum gas is considered. The mean square displacement (MSD) is derived. The Bose-Einstein or Fermi-Dirac distribution, other than the Maxwell-Boltzmann distribution, provides a different stochastic force compared with the classical Brownian motion. The MSD, which depends on the thermal wavelength and the density of medium particles, reflects the quantum effect on the Brownian particle explicitly. The result shows that the MSD in an ideal Bose gas is shorter than that in a Fermi gas. The behavior of the quantum Brownian particle recovers the classical Brownian particle as the temperature raises. At low temperatures, the quantum effect becomes obvious. For example, there is a random motion of the Brownian particle due to the fermionic exchange interaction even the temperature is near the absolute zero.
We investigate the dynamics of quantum particles in a ratchet potential subject to an ac force field. We develop a perturbative approach for weak ratchet potentials and force fields. Within this approach, we obtain an analytic description of dc curre
A number of random processes in various fields of science is described by phenomenological equations containing a stochastic force, the best known example being the Langevin equation (LE) for the Brownian motion (BM) of particles. Long ago Vladimirsk
Quantum Brownian motion in ratchet potentials is investigated by means of an approach based on a duality relation. This relation links the long-time dynamics in a tilted ratchet potential in the presence of dissipation with the one in a driven dissip
The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einsteins relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equi
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type.