ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on the Emission of Gamma Rays from M31 (The Andromeda Galaxy) with HAWC

90   0   0.0 ( 0 )
 نشر من قبل Ryan Rubenzahl
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of the Fermi Bubbles suggests that spiral galaxies such as the Milky Way can undergo active periods. Using gamma-ray observations, we can investigate the possibility that such structures are present in other nearby galaxies. We have analyzed the region around the Andromeda Galaxy (Messier Catalog M31) for signs of bubble-like emission using TeV gamma-ray data recorded by the High-Altitude Water Cherenkov Observatory. We fit a model consisting of two 6 kpc bubbles symmetric about and perpendicular to the M31 galactic plane and assume a power-law distribution for the gamma-ray flux. We compare the emission from these bubble regions to that expected from structures similar to the Fermi Bubbles found in the Milky Way. No significant emission was observed. We report upper limits on the TeV flux from Fermi Bubble structures in M31.

قيم البحث

اقرأ أيضاً

Cosmic rays, along with stellar radiation and magnetic fields, are known to make up a significant fraction of the energy density of galaxies such as the Milky Way. When cosmic rays interact in the interstellar medium, they produce gamma-ray emission which provides an important indication of how the cosmic rays propagate. Gamma rays from the Andromeda Galaxy (M31), located 785 kpc away, provide a unique opportunity to study cosmic-ray acceleration and diffusion in a galaxy with a structure and evolution very similar to the Milky Way. Using 33 months of data from the High Altitude Water Cherenkov Observatory, we search for TeV gamma rays from the galactic plane of M31. We also investigate past and present evidence of galactic activity in M31 by searching for Fermi Bubble-like structures above and below the galactic nucleus. No significant gamma-ray emission is observed, so we use the null result to compute upper limits on the energy density of cosmic rays $>10$ TeV in M31. The computed upper limits are approximately ten times higher than expected from the extrapolation of the Fermi LAT results.
Galaxy clusters are predicted to produce gamma-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT ph oton count maps using the 78 richest nearby clusters (z<0.12) from the Two Micron All-Sky Survey (2MASS) cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3e-11 ph/s/cm^2 (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5e44 ph/s. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and gamma-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.
336 - A. Albert , R. Alfaro , C. Alvarez 2021
The study of high-energy gamma rays from passive Giant Molecular Clouds (GMCs) in our Galaxy is an indirect way to characterize and probe the paradigm of the sea of cosmic rays in distant parts of the Galaxy. By using data from the High Altitude Wate r Cherenkov (HAWC) observatory, we measure the gamma-ray flux above 1 TeV of a set of these clouds to test the paradigm. We selected high-galactic latitude clouds that are in HAWCs field-of-view and which are within 1~kpc distance from the Sun. We find no significant excess emission in the cloud regions, nor when we perform a stacked log-likelihood analysis of GMCs. Using a Bayesian approach, we calculate 95% credible intervals upper limits of the gamma-ray flux and estimate limits on the cosmic-ray energy density of these regions. These are the first limits to constrain gamma-ray emission in the multi-TeV energy range ($>$1 TeV) using passive high-galactic latitude GMCs. Assuming that the main gamma-ray production mechanism is due to proton-proton interaction, the upper limits are consistent with a cosmic-ray flux and energy density similar to that measured at Earth.
The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the $>100 obreakspacerm{GeV}$ energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift $zlesssim0.5$ and featured the longes t lasting emission above $100 obreakspacerm{MeV}$. The energy spectrum extends at least up to $95 obreakspacerm{GeV}$, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavourable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the $mathit{Fermi}$-LAT energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.
139 - A. Albert , R. Alfaro , C. Alvarez 2017
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. A mong the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا