ﻻ يوجد ملخص باللغة العربية
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.
The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is designed to perform a synoptic survey of the TeV sky. The high energy coverage of the experiment will enable studies of fundamental physics beyond the Standard Model, and the large fie
Dwarf spheroidal galaxies are dark matter dominated systems, and as such, ideal for indirect dark matter searches. If dark matter decays into high-energy photons in the dwarf galaxies, they will be a good target for current and future generations of
The search for Dark Matter (DM) has great potential to reveal physics beyond the Standard Model. As such, searches for evidence of DM particles are being carried out using a wide range of techniques, such as direct searches for DM particles, searches
We present the first observational limits on the predicted synchrotron signals from particle Dark Matter annihilation models in dwarf spheroidal galaxies at radio frequencies below 1 GHz. We use a combination of survey data from the Murchison Widefie
The H.E.S.S. experiment is an array of four identical imaging atmospheric Cherenkov telescopes in the Southern hemisphere, designed to observe very high energy gamma-rays (E > 100 GeV). These high energy gamma-rays can be used to search for annihilat