ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the Emission of Gamma Rays from M31 with HAWC

69   0   0.0 ( 0 )
 نشر من قبل Chang Dong Rho
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic rays, along with stellar radiation and magnetic fields, are known to make up a significant fraction of the energy density of galaxies such as the Milky Way. When cosmic rays interact in the interstellar medium, they produce gamma-ray emission which provides an important indication of how the cosmic rays propagate. Gamma rays from the Andromeda Galaxy (M31), located 785 kpc away, provide a unique opportunity to study cosmic-ray acceleration and diffusion in a galaxy with a structure and evolution very similar to the Milky Way. Using 33 months of data from the High Altitude Water Cherenkov Observatory, we search for TeV gamma rays from the galactic plane of M31. We also investigate past and present evidence of galactic activity in M31 by searching for Fermi Bubble-like structures above and below the galactic nucleus. No significant gamma-ray emission is observed, so we use the null result to compute upper limits on the energy density of cosmic rays $>10$ TeV in M31. The computed upper limits are approximately ten times higher than expected from the extrapolation of the Fermi LAT results.

قيم البحث

اقرأ أيضاً

The detection of the Fermi Bubbles suggests that spiral galaxies such as the Milky Way can undergo active periods. Using gamma-ray observations, we can investigate the possibility that such structures are present in other nearby galaxies. We have ana lyzed the region around the Andromeda Galaxy (Messier Catalog M31) for signs of bubble-like emission using TeV gamma-ray data recorded by the High-Altitude Water Cherenkov Observatory. We fit a model consisting of two 6 kpc bubbles symmetric about and perpendicular to the M31 galactic plane and assume a power-law distribution for the gamma-ray flux. We compare the emission from these bubble regions to that expected from structures similar to the Fermi Bubbles found in the Milky Way. No significant emission was observed. We report upper limits on the TeV flux from Fermi Bubble structures in M31.
Gamma-ray bursts (GRBs) are among the most luminous sources in the universe. The nature of their emission at TeV energies is one of the most relevant open issues related to these events. The temporal and spectral features inferred from the early and late emissions usually known as prompt and afterglow, respectively, can be interpreted within the context of the fireball model. The synchrotron self-Compton process is expected during the afterglow phase. We explain how the theoretical SSC light curves can be compared with hypothetical upper limit located at z=0.3. We show the allowed parameter space of the microphysical parameters and density of the circumburst medium. The most restrictive results are obtained when the SSC process lies in the fast cooling regime
Due to the high energies and long distances to the sources, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz invariance violation (LIV). Superluminal LIV enables the decay of photons at high energy. The H igh Altitude Water Cherenkov (HAWC) Observatory is among the most sensitive gamma-ray instruments currently operating above 10 TeV. HAWC finds evidence of 100 TeV photon emission from at least four astrophysical sources. These observations exclude, for the strongest of the limits set, the LIV energy scale to $2.2times10^{31}$ eV, over 1800 times the Planck energy and an improvement of 1 to 2 orders of magnitude over previous limits.
336 - A. Albert , R. Alfaro , C. Alvarez 2021
The study of high-energy gamma rays from passive Giant Molecular Clouds (GMCs) in our Galaxy is an indirect way to characterize and probe the paradigm of the sea of cosmic rays in distant parts of the Galaxy. By using data from the High Altitude Wate r Cherenkov (HAWC) observatory, we measure the gamma-ray flux above 1 TeV of a set of these clouds to test the paradigm. We selected high-galactic latitude clouds that are in HAWCs field-of-view and which are within 1~kpc distance from the Sun. We find no significant excess emission in the cloud regions, nor when we perform a stacked log-likelihood analysis of GMCs. Using a Bayesian approach, we calculate 95% credible intervals upper limits of the gamma-ray flux and estimate limits on the cosmic-ray energy density of these regions. These are the first limits to constrain gamma-ray emission in the multi-TeV energy range ($>$1 TeV) using passive high-galactic latitude GMCs. Assuming that the main gamma-ray production mechanism is due to proton-proton interaction, the upper limits are consistent with a cosmic-ray flux and energy density similar to that measured at Earth.
The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the $>100 obreakspacerm{GeV}$ energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift $zlesssim0.5$ and featured the longes t lasting emission above $100 obreakspacerm{MeV}$. The energy spectrum extends at least up to $95 obreakspacerm{GeV}$, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavourable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the $mathit{Fermi}$-LAT energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا