ﻻ يوجد ملخص باللغة العربية
We report a systematic study of the structure, electric and magnetic properties of Ca$_3$Co$_{2-x}$Mn$_x$O$_6$ single crystals with $x =$ 0.72 and 0.26. The DC and AC magnetic susceptibilities display anomalies with characteristic of the spin freezing. The crystals show ferroelectric transition at 40 K and 35 K ($T_{FE}$) for $x =$ 0.72 and 0.26, respectively, with a large value of 1400 $mu$C/m$^2$ at 8 K for electric polarization ($P_c$) along the spin-chain ($c$-axis) direction. Interestingly, the electric polarization perpendicular to the chain direction ($P_{ab}$) can also be detected and has value of 450 and 500 $mu$C/m$^2$ at 8 K for the $x =$ 0.72 and 0.26 samples, respectively. The specific heat and magnetic susceptibility show no anomaly around $T_{FE}$, which means that the electric polarization of these samples has no direct relationship with the magnetism. The X-ray diffraction and the Raman spectroscopy indicate that these samples may undergo Jahn-Teller distortions that could be the reason of electric polarization.
The origin of both the Ising chain magnetism and ferroelectricity in Ca$_3$CoMnO$_6$ is studied by $ab$ $initio$ electronic structure calculations and x-ray absorption spectroscopy. We find that Ca$_3$CoMnO$_6$ has the alternate trigonal prismatic Co
Layered perovskites $A_3M_2$O$_7$ are known to exhibit the so-called hybrid improper ferroelectricity. Despite experimentally confirmed cases (e.g. nonmagnetic $M$=Ti and Sn), the ferroelectricity in magnetic Ca$_3$Mn$_2$O$_7$ remains a puzzle. Here,
We have studied the effect of Al doping on the structural, magnetic and electrical properties of La$_{1-x}$Ba$_x$Mn$_{1-x}$Al$_x$O$_3$ ($0leq x leq 0.25$) manganite, annealed in two 750$^oC$ and 1350$^oC$ temperatures. The XRD analysis shows that the
The valence and spin state evolution of Mn and Co on TbMn$_{rm 1-x}$Co$_{rm x}$O$_3$ series is precisely determined by means of soft and hard x-ray absorption spectroscopy (XAS) and K$beta$ x-ray emission spectroscopy (XES). Our results show the chan
A neutron scattering study of nonsuperconducting La$_{2-x}$Sr$_x$CaCu$_2$O$_6$ (x=0 and 0.2), a bilayer copper oxide without CuO chains, has revealed an unexpected tetragonal-to-orthorhombic transition with a doping dependent transition temperature.