ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of ferroelectricity in Ca$_3$Mn$_2$O$_7$ and its prominent light absorption

229   0   0.0 ( 0 )
 نشر من قبل Shuai Dong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Layered perovskites $A_3M_2$O$_7$ are known to exhibit the so-called hybrid improper ferroelectricity. Despite experimentally confirmed cases (e.g. nonmagnetic $M$=Ti and Sn), the ferroelectricity in magnetic Ca$_3$Mn$_2$O$_7$ remains a puzzle. Here, the structural, ferroelectric, magnetoelectric, and optical properties of Ca$_3$Mn$_2$O$_7$ are systematically investigated. Switchable polarization is directly measured, demonstrating its ferroelectricity. In addition, magnetoelectric response is also evidenced, implying the coupling between magnetism and ferroelectricity. Furthermore, strong visible light absorption is observed, which can be understood from its electronic structure. Its direct and appropriate band gap, as well as wide conducting bands, makes Ca$_3$Mn$_2$O$_7$ a potential candidate for ferroelectric photoelectric applications.

قيم البحث

اقرأ أيضاً

97 - Lin Lin , Y. L. Xie , J.-J. Wen 2015
The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, hosting many emergent properties, e.g. spin ice and monopole-type excitation. Recently, the magnetic monopole excitation of spin ice systems was predicted t o be magnetoelectric active, while rare experimental works have directly confirmed this scenario. In this work, we performed systematic experimental investigation on the magnetoelectricity of Dy$_2$Ti$_2$O$_7$ by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at $T_{c1}$=25 K and $T_{c2}$=13 K have been observed. Remarkable magnetoelectric coupling is identified below the lower transition temperature, with a significant suppression of the electric polarization upon applied magnetic field. It is surprised that the lower ferroelectric transition temperature just coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, indicating implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms have also been discussed although a decent theory remains unavailable up to date. Our results will stimulate more investigations to explore multiferroicity in these spin ice systems and other frustrated magnets.
89 - Hua Wu , T. Burnus , Z. Hu 2008
The origin of both the Ising chain magnetism and ferroelectricity in Ca$_3$CoMnO$_6$ is studied by $ab$ $initio$ electronic structure calculations and x-ray absorption spectroscopy. We find that Ca$_3$CoMnO$_6$ has the alternate trigonal prismatic Co $^{2+}$ and octahedral Mn$^{4+}$ sites in the spin chain. Both the Co$^{2+}$ and Mn$^{4+}$ are in the high spin state. In addition, the Co$^{2+}$ has a huge orbital moment of 1.7 $mu_B$ which is responsible for the significant Ising magnetism. The centrosymmetric crystal structure known so far is calculated to be unstable with respect to exchange striction in the experimentally observed $uparrowuparrowdownarrowdownarrow$ antiferromagnetic structure for the Ising chain. The calculated inequivalence of the Co-Mn distances accounts for the ferroelectricity.
In the metallic pyrochlore Nd$_2$Mo$_2$O$_7$, the conducting Molybdenum sublattice adopts canted, yet nearly collinear ferromagnetic order with nonzero scalar spin chirality. The chemical potential may be controlled by replacing Nd$^{3+}$ with Ca$^{2 +}$, while introducing only minimal additional disorder to the conducting states. Here, we demonstrate the stability of the canted ferromagnetic state, including the tilting angle of Molybdenum spins, in (Nd$_{1-x}$Ca$_{x}$)$_2$Mo$_2$O$_7$ (NCMO) with $xle 0.15$ using magnetic susceptibility measurements. Mo-Mo and Mo-Nd magnetic couplings both change sign above $x=0.22$, where the canted ferromagnetic state gives way to a spin-glass metallic region. Contributions to the Curie-Weiss law from two magnetic sublattices are separated systematically.
We present a novel hydrated layered manganate MgMn$_3$O$_7$$cdot$3H$_2$O as a maple-leaf-lattice (MLL) antiferromagnet candidate. The MLL is obtained by regularly depleting 1/7 of the lattice points from a triangular lattice so that the magnetic conn ectivity $z = 5$ and is thus intermediately frustrated between the triangular ($z = 6$) and kagome ($z = 4$) lattices. In MgMn$_3$O$_7$$cdot$3H$_2$O, the Mn$^{4+}$ ions, carrying Heisenberg spin 3/2, form a regular MLL lattice in the quasi-two-dimensional structure. Magnetization and heat capacity measurements using a hydrothermally-prepared powder sample reveal successive antiferromagnetic transitions at 5 and 15 K. A high-field magnetization curve up to 60 T at 1.3 K exhibits a multi-step plateau-like anomaly. We discuss the unique frustration of the MLL antiferromagnet in which the chiraldegree of freedom may play an important role.
77 - J. Shi , J. D. Song , J. C. Wu 2017
We report a systematic study of the structure, electric and magnetic properties of Ca$_3$Co$_{2-x}$Mn$_x$O$_6$ single crystals with $x =$ 0.72 and 0.26. The DC and AC magnetic susceptibilities display anomalies with characteristic of the spin freezin g. The crystals show ferroelectric transition at 40 K and 35 K ($T_{FE}$) for $x =$ 0.72 and 0.26, respectively, with a large value of 1400 $mu$C/m$^2$ at 8 K for electric polarization ($P_c$) along the spin-chain ($c$-axis) direction. Interestingly, the electric polarization perpendicular to the chain direction ($P_{ab}$) can also be detected and has value of 450 and 500 $mu$C/m$^2$ at 8 K for the $x =$ 0.72 and 0.26 samples, respectively. The specific heat and magnetic susceptibility show no anomaly around $T_{FE}$, which means that the electric polarization of these samples has no direct relationship with the magnetism. The X-ray diffraction and the Raman spectroscopy indicate that these samples may undergo Jahn-Teller distortions that could be the reason of electric polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا