ﻻ يوجد ملخص باللغة العربية
We investigate the feasibility of constraining parton distribution functions in the proton through a comparison with data on semi-inclusive deep-inelastic lepton-nucleon scattering. Specifically, we reweight replicas of these distributions according to how well they reproduce recent, very precise charged kaon multiplicity measurements and analyze how this procedure optimizes the determination of the sea quark densities and improves their uncertainties. The results can help to shed new light on the long standing question on the size of the flavor and charge symmetry breaking among quarks of radiative origin. An iterative method is proposed and adopted to account for the inevitable correlation with what is assumed about the parton-to-hadron fragmentation functions in the reweighting procedure. It is shown how the fragmentation functions can be optimized simultaneously in each step of the iteration. As a first case study, we implement this method to analyze kaon production data.
We use the meson cloud model to calculate $bar{d}(x) - bar{u}(x)$ and $ bar{d}(x)/bar{u}(x)$ in the proton. We show that a modification of the symmetric, perturbative part of the light quark sea provides better agreement with the ratio $ bar{d}(x)/bar{u}(x).
We present a first attempt to design a quantum circuit for the determination of the parton content of the proton through the estimation of parton distribution functions (PDFs), in the context of high energy physics (HEP). The growing interest in quan
The inclusive production of hadrons through electroweak currents can be rigorously analysed with short-distance theoretical tools. The associated observables are insensitive to the involved infrared behaviour of the strong interaction, allowing for v
One of the primary goals of the spin program at the Relativistic Heavy Ion Collider (RHIC) is to determine the polarization of the sea quarks and gluons in the proton. The polarization of the sea quarks is probed through the production of $W^{-(+)}$
We propose a new experimental method to probe the photon parton distribution function inside the proton (photon PDF) at LHC energies. The method is based on the measurement of dilepton production from the $gamma prightarrowell^+ell^-+X$ reaction in p