ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision physics with inclusive QCD processes

74   0   0.0 ( 0 )
 نشر من قبل Antonio Pich
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Antonio Pich




اسأل ChatGPT حول البحث

The inclusive production of hadrons through electroweak currents can be rigorously analysed with short-distance theoretical tools. The associated observables are insensitive to the involved infrared behaviour of the strong interaction, allowing for very precise tests of Quantum Chromodynamics. The theoretical predictions for $sigma(e^+e^-tomathrm{hadrons})$ and the hadronic decay widths of the $tau$ lepton and the $Z$, $W$ and Higgs bosons have reached an impressive accuracy of $mathcal{O}(alpha_s^4)$. Precise experimental measurements of the $Z$ and $tau$ hadronic widths have made possible the accurate determination of the strong coupling at two very different energy scales, providing a highly significant experimental verification of asymptotic freedom. A detailed discussion of the theoretical description of these processes and their current phenomenological status is presented. The most precise determinations of $alpha_s$ from other sources are also briefly reviewed and compared with the fully-inclusive results.

قيم البحث

اقرأ أيضاً

79 - Sibo Zheng 2019
We propose a novel approach of probing grand unification through precise measurements on the Higgs Yukawa couplings at the LHC. This idea is well motivated by the appearance of effective operators not suppressed by the mass scale of unification $M_{r m{U}}$ in realistic models of unification with the minimal structure of Yukawa sector. Such operators modify the Higgs Yukawa couplings in correlated patterns at scale $M_{rm{U}}$ that hold up to higher-order corrections. The coherences reveal a feature that, the deviation of tau Yukawa coupling relative to its standard model value at the weak scale is the largest one among the third-generation Yukawa couplings. This feature, if verified by the future LHC, can serve as a hint of unification.
73 - P. Azzi , P. Azzurri , S. Biswas 2017
This document provides a writeup of contributions to the FCC-ee mini-workshop on Physics behind precision held at CERN, on 2-3 February 2016.
Collider experiments often exploit information about the quantum numbers of final state hadrons to maximize their sensitivity, with applications ranging from the use of tracking information (electric charge) for precision jet substructure measurement s, to flavor tagging for nucleon structure studies. For such measurements perturbative calculations in terms of quarks and gluons are insufficient, and non-perturbative track functions describing the energy fraction of a quark or gluon converted into a subset of hadrons (e.g. charged hadrons), must be incorporated. Unlike fragmentation functions, track functions describe correlations between hadrons, and therefore satisfy complicated non-linear evolution equations whose structure has so far eluded calculation beyond the leading order. In this Letter we develop an understanding of track functions, and their interplay with energy flow observables, beyond the leading order, allowing them to be used in state-of-the-art perturbative calculations for the first time. We identify a shift symmetry in the evolution of their moments that fixes their structure, and we explicitly compute the evolution of the first three moments at next-to-leading order, allowing for the description of up to three-point energy correlations. We then calculate the two-point energy correlator on charged particles at $O(alpha_s^2)$, illustrating explicitly that infrared singularities in perturbation theory are absorbed by moments of the track functions, and also highlighting how these moments seamlessly interplay with modern techniques for perturbative calculations. Our results extend the boundaries of traditional perturbative QCD, enabling precision perturbative predictions for energy flow observables sensitive to the quantum numbers of hadronic states.
We carry out a state-of-the-art assessment of long baseline neutrino oscillation experiments with wide band beams. We describe the feasibility of an experimental program using existing high energy accelerator facilities, a new intense wide band neutr ino beam (0-6 GeV) and a proposed large detector in a deep underground laboratory. We find that a decade-long program with 1 MW operation in the neutrino mode and 2 MW operation in the antineutrino mode, a baseline as long as the distance between Fermilab and the Homestake mine (1300 km) or the Henderson mine (1500 km), and a water Cherenkov detector with fiducial mass of about 300 kT has optimum sensitivity to theta_{13}, the mass hierarchy and to neutrino CP violation at the 3sigma C.L. for sin^22theta_{13}>0.008. This program is capable of breaking the eight-fold degeneracy down to the octant degeneracy without additional external input.
We present a precise lattice QCD determination of the b-quark mass, of the B and Bs decay constants and first results for the B-meson bag parameters. For our computation we employ the so-called ratio method and our results benefit from the use of imp roved interpolating operators for the B-mesons. QCD calculations are performed with Nf = 2 dynamical light-quarks at four values of the lattice spacing and the results are extrapolated to the continuum limit. The preliminary results are mb(mb) = 4.35(12) GeV for the MSbar b-quark mass, fBs = 234(6) MeV and fB = 197(10) MeV for the B-meson decay constants, BBs(mb) = 0.90(5) and BB(mb) = 0.87(5) for the B-meson bag parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا