ﻻ يوجد ملخص باللغة العربية
We consider the dimer Hubbard model within Dynamical Mean Field Theory to study the interplay and competition between Mott and Peierls physics. We describe the various metal-insulator transition lines of the phase diagram and the break down of the different solutions that occur along them. We focus on the specific issue of the debated Mott-Peierls insulator crossover and describe the systematic evolution of the electronic structure across the phase diagram. We found that at low intra-dimer hopping the emerging local magnetic moments can unbind above a characteristic singlet temperature $T^*$. Upon increasing the inter-dimer hopping subtle changes occur in the electronic structure. Notably, we find Hubbard bands of a mix character with coherent and incoherent excitations. We argue that this state is relevant for VO$_2$ and its signatures may be observed in spectroscopic studies, and possibly through pump-probe experiments.
Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this work, we develop and carry out state of the art linear scaling DFT calculations refined with non-local dynamical mean-field theory. We identify a complex mechanism,
The interaction-driven Mott transition in the half-filled Hubbard model is a first-order phase transition that terminates at a critical point $(T_mathrm{c},U_mathrm{c})$ in the temperature-interaction plane $T-U$. A number of crossovers occur along l
The interplay between electron correlation and topology of relativistic electrons may lead to a new stage of the research on quantum materials and emergent functions. The emergence of various collective electronic orderings/liquids, which are tunable
The possibility of novel behavior at interfaces between strongly and weakly correlated materials has come under increased study recently. In this paper, we use determinant Quantum Monte Carlo to determine the inter-penetration of metallic and Mott in
TiPO$_4$ is a Mott insulator and one of few inorganic compounds featuring a spin-Peierls phase at low temperature. Recent experimental studies have suggested the presence of spin-Peierls dimerization also at ambient temperature though at high pressur