ﻻ يوجد ملخص باللغة العربية
The possibility of novel behavior at interfaces between strongly and weakly correlated materials has come under increased study recently. In this paper, we use determinant Quantum Monte Carlo to determine the inter-penetration of metallic and Mott insulator physics across an interface in the two dimensional Hubbard Hamiltonian. We quantify the behavior of the density of states at the Fermi level and the short and long range antiferromagnetism as functions of the distance from the interface and with different interaction strength, temperature and hopping across the interface. Induced metallic behavior into the insulator is evident over several lattice spacings, whereas antiferromagnetic correlations remain small on the metallic side. At large interface hopping, singlets form between the two boundary layers, shielding the two systems from each other.
We compute the spin-active scattering matrix and the local spectrum at the interface between a metal and a three-dimensional topological band insulator. We show that there exists a critical incident angle at which complete (100%) spin flip reflection
We present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca$_3$Ru$_2$O$_7$. Such an insulator-metal transition is accompanie
We present a computationally efficient method to obtain the spectral function of bulk systems in the framework of steady-state density functional theory (i-DFT) using an idealized Scanning Tunneling Microscope (STM) setup. We calculate the current th
The correlation-driven Mott transition is commonly characterized by a drop in resistivity across the insulator-metal phase boundary; yet, the complex permittivity provides a deeper insight into the microscopic nature. We investigate the frequency- an
Recent experiments demonstrating large spin-transfer torques in topological insulator (TI)-ferromagnetic metal (FM) bilayers have generated a great deal of excitement due to their potential applications in spintronics. The source of the observed spin