ﻻ يوجد ملخص باللغة العربية
We study a question of presence of Kohn points, yielding at low temperatures non-analytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectum of some three-dimensional systems. In particular, we consider one-band model on face centered cubic lattice with hopping between nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn$_2$, and the two-band model on body centered cubic lattice, modeling the dispersion of chromium. For the former model it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model we show existence of the lines of Kohn points, yielding maximum of the susceptibility, which position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.
We consider the non-analytic terms in the spin susceptibility arising as a result of rescaterring of pairs of quasiparticles. We emphasize the importance of rescattering in the Cooper channel for the analysis of the temperature dependences in the two
A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artifici
The role of interchain hopping in quasi-one-dimensional (Q-1D) electron systems is investigated by extending the Kadanoff-Wilson renormalization group of one-dimensional (1D) systems to Q-1D systems. This scheme is applied to the extended Hubbard mod
A universal linear-temperature dependence of the uniform magnetic susceptibility has been observed in the nonmagnetic normal state of iron-pnictides. This non-Pauli and non-Curie-Weiss-like paramagnetic behavior cannot be understood within a pure iti
We show that antiferromagnetic susceptibility in ferritin increases with temperature between 4.2 K and 180 K (i. e. below the N{e}el temperature) when taken as the derivative of the magnetization at high fields ($30times10^4$ Oe). This behavior contr