ﻻ يوجد ملخص باللغة العربية
A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artificial phase transition has been removed. To the zeroth order, the main features of the uniform static susceptibility are produced: a linear temperature dependence at low temperatures and a smooth crossover in the intermediate range and the Curie law at high temperatures. When the leading corrections from the spin-wave interactions are included, the resulting spin susceptibility in the full temperature range is in agreement with the numerical quantum Monte Carlo simulations and high-temperature series expansions.
A universal linear-temperature dependence of the uniform magnetic susceptibility has been observed in the nonmagnetic normal state of iron-pnictides. This non-Pauli and non-Curie-Weiss-like paramagnetic behavior cannot be understood within a pure iti
We show that antiferromagnetic susceptibility in ferritin increases with temperature between 4.2 K and 180 K (i. e. below the N{e}el temperature) when taken as the derivative of the magnetization at high fields ($30times10^4$ Oe). This behavior contr
The correlated spin dynamics and the temperature dependence of the correlation length $xi(T)$ in two-dimensional quantum ($S=1/2$) Heisenberg antiferromagnets (2DQHAF) on square lattice are discussed in the light of experimental results of proton spi
We consider the non-analytic terms in the spin susceptibility arising as a result of rescaterring of pairs of quasiparticles. We emphasize the importance of rescattering in the Cooper channel for the analysis of the temperature dependences in the two
We investigated effects of magnetic field H on antiferromagnetic (AF) structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering measurements. By applying H along the [1,-1,0] direction, the incommensurate AF state with the propaga