ﻻ يوجد ملخص باللغة العربية
The role of interchain hopping in quasi-one-dimensional (Q-1D) electron systems is investigated by extending the Kadanoff-Wilson renormalization group of one-dimensional (1D) systems to Q-1D systems. This scheme is applied to the extended Hubbard model to calculate the temperature ($T$) dependence of the magnetic susceptibility, $chi (T)$. The calculation is performed by taking into account not only the logarithmic Cooper and Peierls channels, but also the non-logarithmic Landau and finite momentum Cooper channels, which give relevant contributions to the uniform response at finite temperatures. It is shown that the interchain hopping, $t_perp$, reduces $chi (T)$ at low temperatures, while it enhances $chi(T)$ at high temperatures. This notable $t_perp$ dependence is ascribed to the fact that $t_perp$ enhances the antiferromagnetic spin fluctuation at low temperatures, while it suppresses the 1D fluctuation at high temperatures. The result is at variance with the random-phase-approximation approach, which predicts an enhancement of $chi (T)$ by $t_perp$ over the whole temperature range. The influence of both the long-range repulsion and the nesting deviations on $chi (T)$ is further investigated. We discuss the present results in connection with the data of $chi (T)$ in the (TMTTF)$_2X$ and (TMTSF)$_2X$ series of Q-1D organic conductors, and propose a theoretical prediction for the effect of pressure on magnetic susceptibility.
We suggest a theory of internal coherent tunneling in the pseudogap region, when the applied voltage U is below the free electron gap 2Delta_0. We address quasi 1D systems, where the gap is originated by spontaneous lattice distortions of the Incomme
The temperature dependence of the magnetic susceptibility, chi (T), is investigated for one-dimensional interacting electron systems at quarter-filling within the Kadanoff-Wilson renormalization-group method. The forward scattering on the same bran
High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice-coupling in a family of quasi-1D insulating cuprates, Ca$_{2+5x}$Y$_{2-5x}$Cu$_5$O$_{10}$. Site-dependent low energy excitations arising from progres
We study a question of presence of Kohn points, yielding at low temperatures non-analytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectum of some three-dimensional systems. In particular, we consider one-band mo
The dynamical properties of free and bound domain-wall excitations in Ising-chain materials have recently become the focus of intense research interest. New materials and spectrometers have made it possible to control the environment of coupled Ising