ﻻ يوجد ملخص باللغة العربية
We present details of materials synthesis, crystal structure, and anisotropic magnetic properties of single crystals of CeAlGe, a proposed type-II Weyl semimetal. Single-crystal x-ray diffraction confirms that CeAlGe forms in noncentrosymmetric I4$_1$md space group, in line with predictions of non-trivial topology. Magnetization, specific heat and electrical transport measurements were used to confirm antiferromagnetic order below 5 K, with an estimated magnon excitation gap of $Delta$ = 9.11 K from heat capacity and hole-like carrier density of 1.44 $times$ 10$^{20}$ cm$^{-3}$ from Hall effect measurements. The easy magnetic axis is along the [100] crystallographic direction, indicating that the moment lies in the tetragonal $it{ab}$-plane below 7 K. A spin-flop transition to less than 1 $mu_B$/Ce is observed to occur below 30 kOe at 1.8 K in the $M(H)$ ($bf{H}|bf{a}$) data. Small magnetic fields of 3 kOe and 30 kOe are sufficient to suppress magnetic order when applied along the $it{a}$- and $it{c}$-axes, respectively, resulting in a complex $it{T-H}$ phase diagram for $bf{H}|bf{a}$ and a simpler one for $bf{H}|bf{c}$.
CeAlGe, a proposed type-II Weyl semimetal, orders antiferromagnetically below 5 K. Both a spin-flop and a spin-flip transitions to less than 1 $mu_B$/Ce are observed at 2 K below 30 kOe in the $M(H)$ ($bf{H}|bf{a}$ and $bf{b}$) and 4.3 kOe ($bf{H}|la
We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-$vec{k}$ magnetic phases below $T_{rm{N}}$. The to
Magnetic topological materials have recently drawn significant importance and interest, due to their topologically nontrivial electronic structure within spontaneous magnetic moments and band inversion. Based on first-principles calculations, we prop
Weyl semimetals, characterized by nodal points in the bulk and Fermi arc states on the surface, have recently attracted extensive attention due to the potential application on low energy consumption electronic materials. In this report, the thermodyn
We theoretically study the Kondo screening of a spin-1/2 magnetic impurity in the bulk of a type-II Weyl semimetal (WSM) by use of the variational wave function method. We consider a type-II WSM model with two Weyl nodes located on the $k_z$-axis, an