ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Weyl nodes in robust type-II Weyl semimetal WP2

347   0   0.0 ( 0 )
 نشر من قبل Meng-Yu Yao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs violates Lorentz invariance and the Weyl cones in the momentum space are tilted. Since it was proposed that type-II Weyl fermions could emerge from (W,Mo)Te2 and (W,Mo)P2 families of materials, a large numbers of experiments have been dedicated to unveil the possible manifestation of type-II WSM, e.g. the surface-state Fermi arcs. However, the interpretations of the experimental results are very controversial. Here, using angle-resolved photoemission spectroscopy supported by the first-principles calculations, we probe the tilted Weyl cone bands in the bulk electronic structure of WP2 directly, which are at the origin of Fermi arcs at the surfaces and transport properties related to the chiral anomaly in type-II WSMs. Our results ascertain that due to the spin-orbit coupling the Weyl nodes originate from the splitting of 4-fold degenerate band-crossing points with Chern numbers C = $pm$2 induced by the crystal symmetries of WP2, which is unique among all the discovered WSMs. Our finding also provides a guiding line to observe the chiral anomaly which could manifest in novel transport properties.



قيم البحث

اقرأ أيضاً

Photo sensing and energy harvesting based on exotic properties of quantum materials and new operation principles have great potentials to break the fundamental performance limit of conventional photodetectors and solar cells. As topological nontrivia l materials, Weyl semimetals have demonstrated novel optoelectronic properties that promise potential applications in photo detection and energy harvesting arising from their gapless linear dispersion near Weyl nodes and Berry field enhanced nonlinear optical effect at the vicinity of Weyl nodes. In this work, we demonstrate robust photocurrent generation from charge separation of photoexctied electron-hole pairs at the edge of Td-WTe2, a type-II Weyl semimetal, due to crystalline-symmetry breaking along certain crystal fracture directions and possibly enhanced by robust fermi-arc type surface states. Using scanning photocurrent microscopy (SPCM) measurements, we further demonstrate that the edge current response is robust over a wide excitation photon energy. We find that this robust feature is highly generic, and shall arise universally in a wide class of quantum materials with similar crystal symmetries. In addition, possible connections between these edge photocurrents and topological properties of Weyl semimetals are explored. The robust and generic edge current response demonstrated in this work provides a new type of charge separation mechanism for photosensing and energy harvesting over broad wavelength range.
Quantum topological materials, exemplified by topological insulators, three-dimensional Dirac semimetals and Weyl semimetals, have attracted much attention recently because of their unique electronic structure and physical properties. Very lately it is proposed that the three-dimensional Weyl semimetals can be further classified into two types. In the type I Weyl semimetals, a topologically protected linear crossing of two bands, i.e., a Weyl point, occurs at the Fermi level resulting in a point-like Fermi surface. In the type II Weyl semimetals, the Weyl point emerges from a contact of an electron and a hole pocket at the boundary resulting in a highly tilted Weyl cone. In type II Weyl semimetals, the Lorentz invariance is violated and a fundamentally new kind of Weyl Fermions is produced that leads to new physical properties. WTe2 is interesting because it exhibits anomalously large magnetoresistance. It has ignited a new excitement because it is proposed to be the first candidate of realizing type II Weyl Fermions. Here we report our angle-resolved photoemission (ARPES) evidence on identifying the type II Weyl Fermion state in WTe2. By utilizing our latest generation laser-based ARPES system with superior energy and momentum resolutions, we have revealed a full picture on the electronic structure of WTe2. Clear surface state has been identified and its connection with the bulk electronic states in the momentum and energy space shows a good agreement with the calculated band structures with the type II Weyl states. Our results provide spectroscopic evidence on the observation of type II Weyl states in WTe2. It has laid a foundation for further exploration of novel phenomena and physical properties in the type II Weyl semimetals.
71 - G. Aut`es , D. Gresch , M. Troyer 2016
The recently discovered type-II Weyl points appear at the boundary between electron and hole pockets. Type-II Weyl semimetals that host such points are predicted to exhibit a new type of chiral anomaly and possess thermodynamic properties very differ ent from their type-I counterparts. In this Letter, we describe the prediction of a type-II Weyl semimetal phase in the transition metal diphosphides MoP$_2$ and WP$_2$. These materials are characterized by relatively simple band structures with four pairs of type-II Weyl points. Neighboring Weyl points have the same chirality, which makes the predicted topological phase robust with respect to small perturbations of the crystalline lattice. In addition, this peculiar arrangement of the Weyl points results in long topological Fermi arcs, thus making them readily accessible in angle-resolved photoemission spectroscopy.
Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fe rtile ground for their discovery as low energy excitations of realistic materials. Here we show the existence of yet another particle - a new type of Weyl fermion - that emerges at the boundary between electron and hole pockets in a new type of Weyl semimetal phase of matter. This fermion was missed by Weyl in 1929 due to its breaking of the stringent Lorentz symmetry of high-energy physics. Lorentz invariance however is not present in condensed matter physics, and we predict that an established material, WTe$_2$, is an example of this novel type of topological semimetal hosting the new particle as a low energy excitation around a type-2 Weyl node. This node, although still a protected crossing, has an open, finite-density of states Fermi surface, likely resulting in a plethora physical properties very different from those of standard point-like Fermi surface Weyl points.
Weyl type-II fermions are massless quasiparticles that obey the Weyl equation and which are predicted to occur at the boundary between electron- and hole-pockets in certain semi-metals, i.e. the (W,Mo)(Te,P)$_2$ compounds. Here, we present a study of the Fermi-surface of WP$_2$ emph{via} the Shubnikov-de Haas (SdH) effect. Compared to other semi-metals WP$_2$ exhibits a very low residual resistivity, i.e. $rho_0 simeq 10$ n$Omega$cm, which leads to perhaps the largest non-saturating magneto-resistivity $(rho(H))$ reported for any compound. For the samples displaying the smallest $rho_0$, $rho(H)$ is observed to increase by a factor of $2.5 times 10^{7}$ $%$ under $mu_{0}H = 35$ T at $T = 0.35$ K. The angular dependence of the SdH frequencies is found to be in very good agreement with the first-principle calculations when the electron- and hole-bands are slightly shifted with respect to the Fermi level, thus supporting the existence of underlying Weyl type-II points in WP$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا