ﻻ يوجد ملخص باللغة العربية
Following similar analysis to that in Lacoin (PTRF 159, 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on the d-dimensional integer lattice is almost surely a constant, which does not depend on the location of the reference point. We provide its upper and lower bounds that are valid for all dimensions.
We consider self-avoiding walk on a tree with random conductances. It is proven that in the weak disorder regime, the quenched critical point is equal to the annealed one, and that in the strong disorder regime, these critical points are strictly dif
We give a survey and unified treatment of functional integral representations for both simple random walk and some self-avoiding walk models, including models with strict self-avoidance, with weak self-avoidance, and a model of walks and loops. Our r
We consider a long-range version of self-avoiding walk in dimension $d > 2(alpha wedge 2)$, where $d$ denotes dimension and $alpha$ the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to Brownian moti
We consider self-avoiding walk, percolation and the Ising model with long and finite range. By means of the lace expansion we prove mean-field behavior for these models if $d>2(alphawedge2)$ for self-avoiding walk and the Ising model, and $d>3(alphaw
We consider random walk and self-avoiding walk whose 1-step distribution is given by $D$, and oriented percolation whose bond-occupation probability is proportional to $D$. Suppose that $D(x)$ decays as $|x|^{-d-alpha}$ with $alpha>0$. For random wal