ﻻ يوجد ملخص باللغة العربية
We investigate the topological properties of spin polarized fermionic polar molecules loaded in a multi-layer structure with the electric dipole moment polarized to the normal direction. When polar molecules are paired by attractive inter-layer interaction, unpaired Majorana fermions can be macroscopically generated in the top and bottom layers in dilute density regime. We show that the resulting topological state is effectively composed by a bundle of 1D Kitaev ladders labeled by in-plane momenta k and -k, and hence belongs to BDI class characterized by the winding number Z, protected by the time reversal symmetry. The Majorana surface modes exhibit a flatband at zero energy, fully gapped from Bogoliubov excitations in the bulk, and hence becomes an idea system to investigate the interaction effects on quantum degenerate Majorana fermions. We further show that additional interference fringes can be identified as a signature of such 2D Majorana surface modes in the time-of-flight experiment.
We investigate how the vortex-vortex separation changes Majorana zero modes in the vicinity of the BCS-BEC (Bose-Einstein condensation) topological phase transition of p-wave resonant Fermi gases. By analytically and numerically solving the Bogoliubo
Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we
We show that long-ranged superconducting order is not necessary to guarantee the existence of Majorana fermion zero modes at the ends of a quantum wire. We formulate a concrete model which applies, for instance, to a semiconducting quantum wire with
We aim to study a one-dimensional $p$-wave superconductor with quasiperiodic on-site potentials. A modified real-space-Pfaffian method is applied to calculate the topological invariants. We confirm that the Majorana zero mode is protected by the nont
A pair of Majorana zero modes (MZMs) constitutes a nonlocal qubit whose entropy is $log 2$. Upon strongly coupling one of the constituent MZMs to a reservoir with a continuous density of states, a universal entropy change of $frac{1}{2}log 2$ is expe