ﻻ يوجد ملخص باللغة العربية
We aim to study a one-dimensional $p$-wave superconductor with quasiperiodic on-site potentials. A modified real-space-Pfaffian method is applied to calculate the topological invariants. We confirm that the Majorana zero mode is protected by the nontrivial topology the topological phase transition is accompanied by the energy gap closing and reopening. In addition, we numerically find that there are mobility edges which originate from the competition between the extended $p$-wave pairing and the localized quasi-disorder. We qualitatively analyze the influence of superconducting pairing parameters and on-site potential strength on the mobility edge. In general, our work enriches the research on the $p$-wave superconducting models with quasiperiodic potentials.
In this paper, a one-dimensional non-Hermitian quasiperiodic $p$-wave superconductor without $mathcal{PT}$-symmetry is studied. By analyzing the spectrum, we discovered there still exists real-complex energy transition even if the inexistence of $mat
The mobility edges (MEs) in energy which separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic result
Mobility edges, separating localized from extended states, are known to arise in the single-particle energy spectrum of disordered systems in dimension strictly higher than two and certain quasiperiodic models in one dimension. Here we unveil a diffe
We study a one-dimensional $p$-wave superconductor subject to non-Hermitian quasiperiodic potentials. Although the existence of the non-Hermiticity, the Majorana zero mode is still robust against the disorder perturbation. The analytic topological ph
In this paper, we study a one-dimensional tight-binding model with tunable incommensurate potentials. Through the analysis of the inverse participation rate, we uncover that the wave functions corresponding to the energies of the system exhibit diffe