ﻻ يوجد ملخص باللغة العربية
Acoustic wave attenuation due to vibrational and rotational molecular relaxation, under simplifying assumptions of near-thermodynamic equilibrium and absence of molecular dissociations, can be accounted for by specifying a bulk viscosity coefficient $mu_B$. In this paper, we propose a simple frequency-dependent bulk viscosity model which, under such assumptions, accurately captures wave attenuation rates from infrasonic to ultrasonic frequencies in Navier--Stokes and lattice Boltzmann simulations. The proposed model can be extended to any gas mixture for which molecular relaxation timescales and attenuation measurements are available. The performance of the model is assessed for air by varying the base temperature, pressure, relative humidity $h_r$, and acoustic frequency. Since the vibrational relaxation timescales of oxygen and nitrogen are a function of humidity, for certain frequencies an intermediate value of $h_r$ can be found which maximizes $mu_B$. The contribution to bulk viscosity due to rotational relaxation is verified to be a function of temperature, confirming recent findings in the literature. While $mu_B$ decreases with higher frequencies, its effects on wave attenuation become more significant, as shown via a dimensionless analysis. The proposed bulk viscosity model is designed for frequency-domain linear acoustic formulations but is also extensible to time-domain simulations of narrow-band frequency content flows.
We derive an analytical connection between kinetic relaxation rate and bulk viscosity of a relativistic fluid in d spatial dimensions, all the way from the ultra-relativistic down to the near non-relativistic regime. Our derivation is based on both C
We present ten new equilibrium solutions to plane Couette flow in small periodic cells at low Reynolds number (Re) and two new traveling-wave solutions. The solutions are continued under changes of Re and spanwise period. We provide a partial classif
We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at
The statistical properties of species undergoing chemical reactions in a turbulent environment are studied. We focus on the case of reversible multi-component reactions of second and higher orders, in a condition close to chemical equilibrium sustain
In this paper, we study the inertial and gravity wave transmissions near the radiative-convective boundaries in the {it f}-plane. Two configurations have been considered: waves propagate from the convective layer to the radiative stratified stable la