ﻻ يوجد ملخص باللغة العربية
We derive an analytical connection between kinetic relaxation rate and bulk viscosity of a relativistic fluid in d spatial dimensions, all the way from the ultra-relativistic down to the near non-relativistic regime. Our derivation is based on both Chapman-Enskog asymptotic expansion and Grads method of moments. We validate our theoretical results against a benchmark flow, providing further evidence of the correctness of the Chapman-Enskog approach; we define the range of validity of this approach and provide evidence of mounting departures at increasing Knudsen number. Finally, we present numerical simulations of transport processes in quark gluon plasmas, with special focus on the effects of bulk viscosity which might prove amenable to future experimental verification.
Viscous heating can play an important role in the dynamics of fluids with strongly temperature-dependent viscosities because of the coupling between the energy and momentum equations. The heat generated by viscous friction produces a local temperatur
We consider the question of fundamental limitations on the performance of eddy-viscosity closure models for turbulent flows, focusing on the Leith model for 2D Large-Eddy Simulation. Optimal eddy viscosities depending on the magnitude of the vorticit
Acoustic wave attenuation due to vibrational and rotational molecular relaxation, under simplifying assumptions of near-thermodynamic equilibrium and absence of molecular dissociations, can be accounted for by specifying a bulk viscosity coefficient
We simulated two particle-based fluid models, namely multiparticle collision dynamics and dissipative particle dynamics, under shear using reverse nonequilibrium simulations (RNES). In cubic periodic simulation boxes, the expected shear flow profile
The nonlinear and nonlocal coupling of vorticity and strain-rate constitutes a major hindrance in understanding the self-amplification of velocity gradients in turbulent fluid flows. Utilizing highly-resolved direct numerical simulations of isotropic