ترغب بنشر مسار تعليمي؟ اضغط هنا

From anti-perovskite to double anti-perovskite: lattice chemistry basis for super-fast transportation of Li+ ions in cubic solid lithium halogen-chalcogenides

183   0   0.0 ( 0 )
 نشر من قبل Zhuo Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a materials genome approach on the basis of the density functional theory, we have formulated a new class of inorganic electrolytes for fast diffusion of Li+ ions, through fine-tuning of lattice chemistry of anti-perovskite structures. Systematic modelling has been carried out to elaborate the structural stability and ion transportation characteristics in Li3AX based cubic anti-perovskite, through alloying on the chalcogen lattice site (A) and alternative occupancy of the halogen site (X). In addition to identifying effective ways for reduction of diffusion barriers for Li+ ions in anti-perovskite phases via suitable designation of lattice occupancy, the current theoretical study leads to discovery and synthesis of a new phase with a double-anti-perovskite structure, Li6OSI2 (or Li3O0.5S0.5I). Such a new compound is of fairly low activation barrier for Li+ diffusion, together with a wide energy band gap to hinder conduction of electrons.



قيم البحث

اقرأ أيضاً

354 - T. Dey , A. Maljuk , D. V. Efremov 2016
Materials with a 5d4 electronic configuration are generally considered to have a nonmagnetic ground state (J=0). Interestingly, Sr2YIrO6 (Ir5+ having 5d4 electronic configuration) was recently reported to exhibit long-range magnetic order at low temp erature and the distorted IrO6 octahedra were discussed to cause the magnetism in this material. Hence, a comparison of structurally distorted Sr2YIrO6 with cubic Ba2YIrO6 may shed light on the source of magnetism in such Ir5+ materials with 5d4 configuration. Besides, Ir5+ materials having 5d4 are also interesting in the context of recently predicted excitonic types of magnetism. Here we report a single-crystal-based analysis of the structural, magnetic, and thermodynamic properties of Ba2YIrO6. We observe that in Ba2YIrO6 for temperatures down to 0.4 K, long-range magnetic order is absent but at the same time correlated magnetic moments are present. We show that these moments are absent in fully relativistic ab initio band-structure calculations; hence, their origin is presently unclear.
We present detailed calculations of the electric field gradient (EFG) using a point charge approximation in Ba$_2$NaOsO$_6$, a Mott insulator with strong spin-orbit interaction. Recent $^{23}$Na nuclear magnetic resonance (NMR) measurements found tha t the onset of local point symmetry breaking, likely caused by the formation of quadrupolar order, precedes the formation of long range magnetic order in this compound. An extension of the static $^{23}$Na NMR measurements as a function of the orientation of a 15 T applied magnetic field at 8 K in the magnetically ordered phase is reported. Broken local cubic symmetry induces a non-spherical electronic charge distribution around the Na site and thus finite EFG, affecting the NMR spectral shape. We combine the spectral analysis as a function of the orientation of the magnetic field with calculations of the EFG to determine the exact microscopic nature of the lattice distortions present in low temperature phases of this material. We establish that orthorhombic distortions, constrained along the cubic axes of the perovskite reference unit cell, of oxygen octahedra surrounding Na nuclei are present in the magnetic phase. Other common types of distortions often observed in oxide structures are considered as well.
Lithium metal batteries are seen as a critical piece towards electrifying aviation. During charging, plating of lithium metal, a critical failure mechanism, has been studied and mitigation strategies have been proposed. For electric aircraft, high di scharge power requirements necessitate stripping of lithium metal in an uniform way and recent studies have identified the evolution of surface voids and pits as a potential failure mechanism. In this work, using density functional theory calculations and thermodynamic analysis, we investigate the discharge process on lithium metal surfaces. In particular, we calculate the tendency for vacancy congregation on lithium metal surfaces, which constitutes the first step in the formation of voids and pits. We find that among the low Miller index surfaces, the (111) surface is the least likely to exhibit pitting issues. Our analysis suggests that faceting control during electrodeposition could be a key pathway towards simultaneously enabling both fast charge and fast discharge.
The skyrmion crystal (SkX) characterized by a multiple-q helical spin modulation has been reported as a unique topological state that competes with the single-q helimagnetic order in non-centrosymmetric materials. Here we report the discovery of a ri ch variety of multiple-q helimagnetic spin structures in the centrosymmetric cubic perovskite SrFeO3. On the basis of neutron diffraction measurements, we have identified two types of robust multiple-q topological spin structures that appear in the absence of external magnetic fields: an anisotropic double-q spin spiral and an isotropic quadruple-q spiral hosting a three-dimensional lattice of hedgehog singularities. The present system not only diversifies the family of SkX host materials, but furthermore provides an experimental missing link between centrosymmetric lattices and topological helimagnetic order. It also offers perspectives for integration of SkXs into oxide electronic devices.
Lithium based deep eutectic solvents (DESs) are excellent candidates for eco-friendly electrolytes in lithium ion batteries. While some of these DES have shown promising results, a clear mechanism of lithium ion transport in DESs is not yet establish ed. This work reports the study on the solvation and transport of lithium in a DES made from lithium perchlorate and acetamide using Molecular Dynamics (MD) simulation and neutron scattering techniques. Based on hydrogen bonding (H-bonding) of acetamide with neighbouring molecules/ions, two states are largely prevalent: 1) acetamide molecules which are H-bonded to lithium ions (~ 36 %) and 2) acetamide molecules that are entirely free (~ 58%). Analysing their stochastic dynamics independently, it is observed that the long-range diffusion of the former is significantly slower than the latter one. This is also validated from the neutron scattering experiment on the same DES system. Further, the analysis the lithium dynamics shows that the diffusion of acetamide molecules in the first category is strongly coupled to that of lithium ions. On an average the lithium ions are H-bonded to ~ 3.2 acetamide molecules in their first solvation. These observations are further bolstered through the analysis of the H-bond correlation function between acetamide and lithium ions, which show that ~ 90% of lithium ionic transport is achieved by vehicular motion where the ions diffuse along with its first solvation shell. The findings of this work are an important advancement in understanding solvation and transport of lithium ion in DES.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا