ﻻ يوجد ملخص باللغة العربية
Materials with a 5d4 electronic configuration are generally considered to have a nonmagnetic ground state (J=0). Interestingly, Sr2YIrO6 (Ir5+ having 5d4 electronic configuration) was recently reported to exhibit long-range magnetic order at low temperature and the distorted IrO6 octahedra were discussed to cause the magnetism in this material. Hence, a comparison of structurally distorted Sr2YIrO6 with cubic Ba2YIrO6 may shed light on the source of magnetism in such Ir5+ materials with 5d4 configuration. Besides, Ir5+ materials having 5d4 are also interesting in the context of recently predicted excitonic types of magnetism. Here we report a single-crystal-based analysis of the structural, magnetic, and thermodynamic properties of Ba2YIrO6. We observe that in Ba2YIrO6 for temperatures down to 0.4 K, long-range magnetic order is absent but at the same time correlated magnetic moments are present. We show that these moments are absent in fully relativistic ab initio band-structure calculations; hence, their origin is presently unclear.
Ba2YIrO6, a Mott insulator, with four valence electrons in Ir5+ d-shell (5d4) is supposed to be non-magnetic, with Jeff = 0, within the atomic physics picture. However, recent suggestions of non-zero magnetism have raised some fundamental questions a
We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir5+(5d4) ions which are anticipated to have Jeff=0 singlet ground states in the strong s
Quantum magnets with significant bond-directional Ising interactions, so-called Kitaev materials, have attracted tremendous attention recently in the search for exotic spin liquid states. Here we present a comprehensive set of measurements that enabl
We present detailed calculations of the electric field gradient (EFG) using a point charge approximation in Ba$_2$NaOsO$_6$, a Mott insulator with strong spin-orbit interaction. Recent $^{23}$Na nuclear magnetic resonance (NMR) measurements found tha
A previously unreported Pb-based perovskite PbMoO$_3$ is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the $Pmbar{3}m$ cubic structure at room temperature, making it distinct from typical Pb-based perovskite