ﻻ يوجد ملخص باللغة العربية
The distribution of a population throughout the physiological age of the individuals is very relevant information in population studies. It has been modeled by the Langevin and the Fokker- Planck equations. A major problem with these equations is that they allow the physiological age to move back in time. This paper proposes an Infinitesimally ratcheted random walk as a way to solve that problem. Two mathematical representations are proposed. One of them uses a non-local scalar field. The other one is local, but involves a multi-component field of speed states. These two formulations are compared to each other and to the Fokker-Planck equation. The relevant properties are discussed. The dynamics of the mean and variance of the population age resulting from the two proposed formulations are obtained.
In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between V and -V. If V is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accoun
In this paper we consider a particular version of the random walk with restarts: random reset events which bring suddenly the system to the starting value. We analyze its relevant statistical properties like the transition probability and show how an
This paper proposes a simple self-supervised approach for learning a representation for visual correspondence from raw video. We cast correspondence as prediction of links in a space-time graph constructed from video. In this graph, the nodes are pat
The microtubule network, an important part of the cytoskeleton, is constantly remodeled by alternating phases of growth and shrinkage of individual filaments. Plus-end tracking proteins (+TIPs) interact with the microtubule and in many cases alter it
Deterministic walk in an excited random environment is a non-Markov integer-valued process $(X_n)_{n=0}^{infty}$, whose jump at time $n$ depends on the number of visits to the site $X_n$. The environment can be understood as stacks of cookies on each