ﻻ يوجد ملخص باللغة العربية
In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between V and -V. If V is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particles drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. The fundamental solution (for the {Cauchy} probl
The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walks displacement. It i
We consider a directed walk model of a homopolymer (in two dimensions) which is self-interacting and can undergo a collapse transition, subject to an applied tensile force. We review and interpret all the results already in the literature concerning
We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(001) terraces. This model differs from the classical tracer diffusion problem in