ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic walk in an excited random environment

164   0   0.0 ( 0 )
 نشر من قبل David Sivakoff
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Deterministic walk in an excited random environment is a non-Markov integer-valued process $(X_n)_{n=0}^{infty}$, whose jump at time $n$ depends on the number of visits to the site $X_n$. The environment can be understood as stacks of cookies on each site of $mathbb Z$. Once all cookies are consumed at a given site, every subsequent visit will result in a walk taking a step according to the direction prescribed by the last consumed cookie. If each site has exactly one cookie, then the walk ends in a loop if it ever visits the same site twice. If the number of cookies per site is increased to two, the walk can visit a site infinitely many times and still not end in a loop. Nevertheless the moments of $X_n$ are sub-linear in $n$ and we establish monotonicity results on the environment that imply large deviations.



قيم البحث

اقرأ أيضاً

Using a high performance computer cluster, we run simulations regarding an open problem about d-dimensional critical branching random walks in a random IID environment The environment is given by the rule that at every site independently, with probab ility p>0, there is a cookie, completely suppressing the branching of any particle located there. Abstract. The simulations suggest self averaging: the asymptotic survival probability in n steps is the same in the annealed and the quenched case; it is frac{2}{qn}, where q:=1-p. This particular asymptotics indicates a non-trivial phenomenon: the tail of the survival probability (both in the annealed and the quenched case) is the same as in the case of non-spatial unit time critical branching, where the branching rule is modified: branching only takes place with probability q for every particle at every iteration.
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim e, when the speed is sublinear, we describe the precise probability of slowdown.
275 - Wenming Hong , Huaming Wang 2010
By decomposing the random walk path, we construct a multitype branching process with immigration in random environment for corresponding random walk with bounded jumps in random environment. Then we give two applications of the branching structure. F irstly, we specify the explicit invariant density by a method different with the one used in Bremont [3] and reprove the law of large numbers of the random walk by a method known as the environment viewed from particles. Secondly, the branching structure enables us to prove a stable limit law, generalizing the result of Kesten-Kozlov-Spitzer [11] for the nearest random walk in random environment. As a byproduct, we also prove that the total population of a multitype branching process in random environment with immigration before the first regeneration belongs to the domain of attraction of some kappa -stable law.
We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival t ime in the general $d$-dimensional case. We then consider a simplified one-dimensional model (where transition probabilities and obstacles are independent and the RWRE only moves to neighbour sites), and obtain finer results for the tail of the survival time. In addition, we study also the mixed probability measures (quenched with respect to the obstacles and annealed with respect to the transition probabilities and vice-versa) and give results for tails of the survival time with respect to these probability measures. Further, we apply the same methods to obtain bounds for the tails of hitting times of Branching Random Walks in Random Environment (BRWRE).
We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the - suitably centered - empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a rando m walk in an infinite valley. The construction of the infinite valley goes back to Golosov. As a consequence, we show weak convergence for both the maximal local time and the self-intersection local time of the RWRE and also determine the exact constant in the almost sure upper limit of the maximal local time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا