ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of the HIE-ISOLDE project at CERN

60   0   0.0 ( 0 )
 نشر من قبل Matthew Fraser
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The HIE-ISOLDE project represents a major upgrade of the ISOLDE nuclear facility with a mandate to significantly improve the quality and increase the intensity and energy of radioactive nuclear beams produced at CERN. The project will expand the experimental nuclear physics programme at ISOLDE by focusing on an upgrade of the existing Radioactive ion beam EXperiment (REX) linac with a 40 MV superconducting linac comprising thirty-two niobium-on-copper sputter-coated quarter-wave resonators housed in six cryomodules. The new linac will raise the energy of post-accelerated beams from 3 MeV/u to over 10 MeV/u. The upgrade will be staged to first deliver beam energies of 5.5 MeV/u using two high-$beta$ cryomodules placed downstream of REX, before the energy variable section of the existing linac is replaced with two low-$beta$ cryomodules and two additional high-$beta$ cryomodules are installed to attain over 10 MeV/u with full energy variability above 0.45 MeV/u. An overview of the project including a status summary of the different R&D activities and the schedule will outlined.

قيم البحث

اقرأ أيضاً

Superconducting material parameters of the Nb film coating on the Quarter-Wave Resonator (QWR) for the HIE-ISOLDE project were studied by fitting experimental results with the Mattis-Bardeen theory. We pointed out a strong correlation among fitted es timators of material parameters in the BCS theory, and proposed a procedure to remove the correlation by simultaneously fitting the surface resistance and effective penetration depth. Unlike previous studies, no literature values were assumed in the fitting. As surface resistance and penetration depth had a similar dependence on coherence length and mean free path, the correlation between these two parameters could not be eliminated by this fitting. The upper critical field measured by SQUID magnetometry showed complementary constraint to the RF result, and this allowed all the material parameters to be determined.
244 - W. Oelert 2015
CERN has a longstanding tradition of pursuing fundamental physics on extreme low and high energy scales. The present physics knowledge is successfully described by the Standard Model and the General Relativity. In the anti-matter regime many predicti ons of this established theory still remain experimentally unverified and one of the most fundamental open problems in physics concerns the question of asymmetry between particles: why is the observable and visible universe apparently composed almost entirely of matter and not of anti-matter? There is a huge interest in the very compelling scientiic case for anti-hydrogen and low energy anti-proton physics, here to name especially the Workshop on New Opportunities in the Physics Landscape at CERN which was convened in May 2009 by the CERN Directorate and culminated in the decision for the final approval of the construction of the Extra Low ENergy Antiproton (ELENA) ring by the Research Board in June 2011. ELENA is a CERN project aiming to construct a small 30 m circumference synchrotron to further decelerate anti-protons from the Antiproton Decelerator (AD) from 5.3 MeV down to 100 keV.
This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.
Project X is a multi-megawatt proton facility being developed to support a world-leading program in Intensity Frontier physics at Fermilab. The facility will support programs in elementary particle and nuclear physics, with the potential for broader applications in materials and energy research. Project X is in the development stage with a R&D program focused on front end and superconducting RF acceleration technologies, and with design concepts for a staged implementation. This paper will review the status of the Project X conceptual development and the associated R&D programs.
255 - W. Scandale 2021
The UA9 setup, installed in the Super Proton Synchrotron (SPS) at CERN, was exploited for a proof of principle of the double-crystal scenario, proposed to measure the electric and the magnetic moments of short-lived baryons in a high-energy hadron co llider, such as the Large Hadron Collider (LHC). Linear and angular actuators were used to position the crystals and establish the required beam configuration. Timepix detectors and high-sensitivity Beam Loss Monitors were exploited to observe the deflected beams. Linear and angular scans allowed exploring the particle interactions with the two crystals and recording their efficiency. The measured values of the beam trajectories, profiles and of the channeling efficiency agree with the results of a Monte-Carlo simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا