ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation protection at CERN

84   0   0.0 ( 0 )
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

قيم البحث

اقرأ أيضاً

A high-intensity hyperon beam was constructed at CERN to deliver Sigma- to experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup allowed rapid changeover between hyperon and conventional hadron beam configurations. The beam provided a Sigma-flux of 1.4 x 10^5 per burst at mean momenta between 330 and 345 Gev/c, produced by about 3 x 10^10 protons of 450 GeV/c . At the experiment target the beam had a Sigma-/pi- ratio close to 0.4 and a size of 1.6 x 3.7 cm^2. The beam particle trajectories and their momenta were measured with a scintillating fibre hodoscope in the beam channel and a silicon microstrip detector at the exit of the channel. A fast transition radiation detector was used to identify the pion component of the beam.
We discuss the possibility of creating novel research tools by producing and storing highly relativistic beams of highly ionised atoms in the CERN accelerator complex, and by exciting their atomic degrees of freedom with lasers to produce high-energy photon beams. Intensity of such photon beams would be by several orders of magnitude higher than offered by the presently operating light sources, in the particularly interesting gamma-ray energy domain of 0.1-400 MeV. In this energy range, the high-intensity photon beams can be used to produce secondary beams of polarised electrons, polarised positrons, polarised muons, neutrinos, neutrons and radioactive ions. New research opportunities in a wide domain of fundamental and applied physics can be opened by the Gamma Factory scientific programme based on the above primary and secondary beams.
57 - H. Pfeffer , B. Flora , 2016
Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power convert ers, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.
Features of forward diffracted Parametric X-Radiation (PXR) were investigated at experiments with the 855 MeV electron beam of the Mainz Microtron MAMI employing a 410 micrometer thick tungsten single crystal. Virtual photons from the electron field are diffracted by the (10-1) plane at a Bragg angle of 3.977 degree. Forward emitted radiation was analyzed at an energy of 40 keV with the (111) lattice planes of a flat silicon single crystal in Bragg geometry. Clear peak structures were observed in an angular scan of the tungsten single crystal. The results were analyzed with a model which describes forward diffracted PXR under real experimental conditions. The experiments show that forward diffracted PXR may be employed to diagnose bending radii of lattice planes in large area single crystals.
The Mu2e experiment at Fermilab is being designed to study the coherent neutrino-less conversion of a negative muon into an electron in the field of a nucleus. This process has an extremely low probability in the Standard Model, and its observation w ould provide unambiguous evidence for beyond the standard model physics. The Mu2e design aims to reach a single-event-sensitivity of about $2.5 times 10^{-17}$ and will probe effective new physics mass scales in the 103-104 TeV range, well beyond the reach of the LHC. This work will examine the maximum beam power that can be tolerated for beam energies in the 0.5-8 GeV range. This has implications for how the sensitivity might be further improved with a second generation experiment using an upgraded proton beam from the PIP-II project, which will be capable of providing MW beams to Fermilab experiments later in the next decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا