ترغب بنشر مسار تعليمي؟ اضغط هنا

Double-crystal measurements at the CERN SPS

256   0   0.0 ( 0 )
 نشر من قبل Walter Scandale
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Scandale




اسأل ChatGPT حول البحث

The UA9 setup, installed in the Super Proton Synchrotron (SPS) at CERN, was exploited for a proof of principle of the double-crystal scenario, proposed to measure the electric and the magnetic moments of short-lived baryons in a high-energy hadron collider, such as the Large Hadron Collider (LHC). Linear and angular actuators were used to position the crystals and establish the required beam configuration. Timepix detectors and high-sensitivity Beam Loss Monitors were exploited to observe the deflected beams. Linear and angular scans allowed exploring the particle interactions with the two crystals and recording their efficiency. The measured values of the beam trajectories, profiles and of the channeling efficiency agree with the results of a Monte-Carlo simulation.

قيم البحث

اقرأ أيضاً

In this paper, we discuss an experimental layout for the two-crystals scenario at the Super Proton Synchrotron (SPS) accelerator. The research focuses on a fixed target setup at the circulating machine in a frame of the Physics Beyond Colliders (PBC) project at CERN. The UA9 experiment at the SPS serves as a testbench for the proof of concept, which is planning to be projected onto the Large Hadron Collider (LHC) scale. The presented in the text configuration was used for the quantitative characterization of the deflected particle beam by a pair of bent silicon crystals. For the first time in the double-crystal configuration, a particle deflection efficiency by the second crystal of $0.188 pm 3 cdot 10^{-5}$ and $0.179 pm 0.013$ was measured on the accelerator by means of the Timepix detector and Beam Loss Monitor (BLM) respectively. In this setup, a wide range angular scan allowed a possibility to textit{in situ} investigate different crystal working regimes (channeling, volume reflection, etc.), and to measure a bent crystal torsion.
68 - G. Iadarola 2013
Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and b eam instabilities were observed at the Proton Synchrotron (PS) during the last stage of preparation of the beams for the Large Hadron Collider (LHC), as well as at the Super Proton Synchrotron (SPS). Since the LHC has started operation in 2009, typical electron cloud phenomena have appeared also in this machine, when running with trains of closely packed bunches (i.e. with spacings below 150ns). Beside the above mentioned indicators, other typical signatures were seen in this machine (due to its operation mode and/or more refined detection possibilities), like heat load in the cold dipoles, bunch dependent emittance growth and degraded lifetime in store and bunch-by-bunch stable phase shift to compensate for the energy loss due to the electron cloud. An overview of the electron cloud status in the different CERN machines (PS, SPS, LHC) will be presented in this paper, with a special emphasis on the dangers for future operation with more intense beams and the necessary countermeasures to mitigate or suppress the effect.
88 - R. Rapp , E. Shuryak 1999
We investigate the significance of thermal dilepton radiation in the intermediate-mass region in heavy-ion reactions at CERN-SpS energies. Within a thermal fireball model for the space-time evolution, the radiation from hot matter is found to dominat e over hard background processes (Drell-Yan and open charm) up to invariant masses of about 2 GeV, with a rather moderate fraction emerging from early stages with temperatures $Tsimeq 175-200$ MeV associated with deconfined matter. Further including a schematic acceptance for the NA50 experiment we find good agreement with the observed enhancement in the region 1.5 GeV~$<M_{mumu}<$~3 GeV. In particular, there is no need to invoke any anomalous open charm enhancement.
This paper presents a review of the recent Machine Learning activities carried out on beam measurements performed at the CERN Large Hadron Collider. This paper has been accepted for publication in IEEE Instrumentation and Measurement Magazine and in the published version no abstract is provided.
The resolution of a conventional telescope used to image visible-light synchrotron radiation is often limited by diffraction effects. To improve resolution, the double-slit interferometer method was developed at KEK and has since become popular aroun d the world. Based on the Van Cittert-Zernike theorem relating transverse source profile to transverse spatial coherence, the particle beam size can be inferred by recording fringe contrast as a function of interferometer slit separation. In this paper, we describe the SPEAR3 double-slit interferometer, develop a theoretical framework for the interferometer and provide experimental results. Of note the double-slit system is rotated about the beam axis to map the dependence of photon beam coherence on angle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا