ﻻ يوجد ملخص باللغة العربية
We theoretically analyze the Andreev bound states and their coupling to external radiation in superconductor-nanowire-superconductor Josephson junctions. We provide an effective Hamiltonian for the junction projected onto the Andreev level subspace and incorporating the effects of nanowire multichannel structure, Rashba spin-orbit coupling, and Zeeman field. Based on this effective model, we investigate the dependence of the Andreev levels and the matrix elements of the current operator on system parameters such as chemical potential, nanowire dimensions, and normal transmission. We show that the combined effect of the multichannel structure and the spin-orbit coupling gives rise to finite current matrix elements between odd states having different spin polarizations. Moreover, our analytical results allow to determine the appropriate parameters range for the detection of transitions between even as well as odd states in circuit QED like experiments, which may provide a way for the Andreev spin qubit manipulation.
We study an analytical model of a Rashba nanowire that is partially covered by and coupled to a thin superconducting layer, where the uncovered region of the nanowire forms a quantum dot. We find that, even if there is no topological superconducting
We consider a Rashba nanowire with proximity gap which can be brought into the topological phase by tuning external magnetic field or chemical potential. We study spin and charge of the bulk quasiparticle states when passing through the topological t
Kitaev chain is a theoretical model of a one-dimensional topological superconductor with Majorana zero modes at the two ends of the chain. With the goal of emulating this model, we build a chain of three quantum dots in a semiconductor nanowire. We o
Sub-gap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically non-trivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel sp
The boundary Greens function (bGF) approach has been established as a powerful theoretical technique for computing the transport properties of tunnel-coupled hybrid nanowire devices. Such nanowires may exhibit topologically nontrivial superconducting