ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-energy Andreev bound states from quantum dots in proximitized Rashba nanowires

384   0   0.0 ( 0 )
 نشر من قبل Christopher Reeg
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an analytical model of a Rashba nanowire that is partially covered by and coupled to a thin superconducting layer, where the uncovered region of the nanowire forms a quantum dot. We find that, even if there is no topological superconducting phase possible, there is a trivial Andreev bound state that becomes pinned exponentially close to zero energy as a function of magnetic field strength when the length of the quantum dot is tuned with respect to its spin-orbit length such that a resonance condition of Fabry-Perot type is satisfied. In this case, we find that the Andreev bound state remains pinned near zero energy for Zeeman energies that exceed the characteristic spacing between Andreev bound state levels but that are smaller than the spin-orbit energy of the quantum dot. Importantly, as the pinning of the Andreev bound state depends only on properties of the quantum dot, we conclude that this behavior is unrelated to topological superconductivity. To support our analytical model, we also perform a numerical simulation of a hybrid system while explicitly incorporating a thin superconducting layer, showing that all qualitative features of our analytical model are also present in the numerical results.

قيم البحث

اقرأ أيضاً

We demonstrate several new electron transport phenomena mediated by Andreev bound states (ABSs) that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal metal (N) contacts. Thre e-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state transition S-QD systems can occur. We ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process called excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a novel mechanism called resonant ABS tunneling. In the latter, electrons are transferred via the ABS without creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transi tion): one is characterized by finite-energy in-gap Andreev bound states, while the other has only extended bulk states. The Andreev bound state regime is characterized by strong features in the tunneling spectra creating a gap closure signature, but no gap reopening signature should be apparent above the topological quantum phase transition, in agreement with most recent experimental observations. The gap closure feature is actually the coming together of the Andreev bound states at high chemical potential rather than a simple trivial gap of extended bulk states closing at the transition. Our theoretical finding establishes the generic intrinsic Andreev bound states on the trivial side of the topological quantum phase transition as the main contributors to the tunneling conductance spectra, providing a generic interpretation of existing experiments in clean Majorana nanowires. Our work also explains why experimental tunnel conductance spectra generically have gap closing features below the topological quantum phase transition, but no gap opening features above it.
We theoretically analyze the Andreev bound states and their coupling to external radiation in superconductor-nanowire-superconductor Josephson junctions. We provide an effective Hamiltonian for the junction projected onto the Andreev level subspace a nd incorporating the effects of nanowire multichannel structure, Rashba spin-orbit coupling, and Zeeman field. Based on this effective model, we investigate the dependence of the Andreev levels and the matrix elements of the current operator on system parameters such as chemical potential, nanowire dimensions, and normal transmission. We show that the combined effect of the multichannel structure and the spin-orbit coupling gives rise to finite current matrix elements between odd states having different spin polarizations. Moreover, our analytical results allow to determine the appropriate parameters range for the detection of transitions between even as well as odd states in circuit QED like experiments, which may provide a way for the Andreev spin qubit manipulation.
We theoretically investigate the behavior of Andreev levels in a single-orbital interacting quantum dot in contact to superconducting leads, focusing on the effect of electrostatic gating and applied magnetic field, as relevant for recent experimenta l spectroscopic studies. In order to account reliably for spin-polarization effects in presence of correlations, we extend here two simple and complementary approaches that are tailored to capture effective Andreev levels: the static functional renormalization group (fRG) and the self-consistent Andreev bound states (SCABS) theory. We provide benchmarks against the exact large-gap solution as well as NRG calculations and find good quantitative agreement in the range of validity. The large flexibility of the implemented approaches then allows us to analyze a sizeable parameter space, allowing to get a deeper physical understanding into the Zeeman field, electrostatic gate, and flux dependence of Andreev levels in interacting nanostructures.
Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dyna mics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا