ﻻ يوجد ملخص باللغة العربية
The boundary Greens function (bGF) approach has been established as a powerful theoretical technique for computing the transport properties of tunnel-coupled hybrid nanowire devices. Such nanowires may exhibit topologically nontrivial superconducting phases with Majorana bound states at their boundaries. We introduce a general method for computing the bGF of spinful multi-channel lattice models for such Majorana nanowires, where the bGF is expressed in terms of the roots of a secular polynomial evaluated in complex momentum space. In many cases, those roots, and thus the bGF, can be accurately described by simple analytical expressions, while otherwise our approach allows for the numerically efficient evaluation of bGFs. We show that from the behavior of the roots, many physical quantities of key interest can be inferred, e.g., the value of bulk topological invariants, the energy dependence of the local density of states, or the spatial decay of subgap excitations. We apply the method to single- and two-channel nanowires of symmetry class D or DIII. In addition, we study the spectral properties of multi-terminal Josephson junctions made out of such Majorana nanowires.
We theoretically analyze the Andreev bound states and their coupling to external radiation in superconductor-nanowire-superconductor Josephson junctions. We provide an effective Hamiltonian for the junction projected onto the Andreev level subspace a
In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index
Developing a gate-tunable, scalable, and topologically-protectable supercurrent qubit and integrating it into a quantum circuit are crucial for applications in the fields of quantum information technology and topological phenomena. Here we propose th
Coulomb blockaded transport of topological superconducting nanowires provides an opportunity to probe the localization of states at both ends of the system in a two-terminal geometry. In addition, it provides a way for checking for subgap states away
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transi