ترغب بنشر مسار تعليمي؟ اضغط هنا

Iterative Updating of Model Error for Bayesian Inversion

39   0   0.0 ( 0 )
 نشر من قبل Matthew Dunlop
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.



قيم البحث

اقرأ أيضاً

58 - Lin Lu , Lu Jun , Li Weiyu 2021
Under the environment of big data streams, it is a common situation where the variable set of a model may change according to the condition of data streams. In this paper, we propose a homogenization strategy to represent the heterogenous models that are gradually updated in the process of data streams. With the homogenized representations, we can easily construct various online updating statistics such as parameter estimation, residual sum of squares and $F$-statistic for the heterogenous updating regression models. The main difference from the classical scenarios is that the artificial covariates in the homogenized models are not identically distributed as the natural covariates in the original models, consequently, the related theoretical properties are distinct from the classical ones. The asymptotical properties of the online updating statistics are established, which show that the new method can achieve estimation efficiency and oracle property, without any constraint on the number of data batches. The behavior of the method is further illustrated by various numerical examples from simulation experiments.
156 - Run Wang , Somak Dutta , 2021
Variable selection in ultra-high dimensional linear regression is often preceded by a screening step to significantly reduce the dimension. Here a Bayesian variable screening method (BITS) is developed. BITS can successfully integrate prior knowledge , if any, on effect sizes, and the number of true variables. BITS iteratively includes potential variables with the highest posterior probability accounting for the already selected variables. It is implemented by a fast Cholesky update algorithm and is shown to have the screening consistency property. BITS is built based on a model with Gaussian errors, yet, the screening consistency is proved to hold under more general tail conditions. The notion of posterior screening consistency allows the resulting model to provide a good starting point for further Bayesian variable selection methods. A new screening consistent stopping rule based on posterior probability is developed. Simulation studies and real data examples are used to demonstrate scalability and fine screening performance.
The goal of causal inference is to understand the outcome of alternative courses of action. However, all causal inference requires assumptions. Such assumptions can be more influential than in typical tasks for probabilistic modeling, and testing tho se assumptions is important to assess the validity of causal inference. We develop model criticism for Bayesian causal inference, building on the idea of posterior predictive checks to assess model fit. Our approach involves decomposing the problem, separately criticizing the model of treatment assignments and the model of outcomes. Conditioned on the assumption of unconfoundedness---that the treatments are assigned independently of the potential outcomes---we show how to check any additional modeling assumption. Our approach provides a foundation for diagnosing model-based causal inferences.
Efficient sampling for the conditional time integrated variance process in the Heston stochastic volatility model is key to the simulation of the stock price based on its exact distribution. We construct a new series expansion for this integral in te rms of double infinite weighted sums of particular independent random variables through a change of measure and the decomposition of squared Bessel bridges. When approximated by series truncations, this representation has exponentially decaying truncation errors. We propose feasible strategies to largely reduce the implementation of the new series to simulations of simple random variables that are independent of any model parameters. We further develop direct inversion algorithms to generate samples for such random variables based on Chebyshev polynomial approximations for their inverse distribution functions. These approximations can be used under any market conditions. Thus, we establish a strong, efficient and almost exact sampling scheme for the Heston model.
This paper discusses an alternative to conditioning that may be used when the probability distribution is not fully specified. It does not require any assumptions (such as CAR: coarsening at random) on the unknown distribution. The well-known Monty H all problem is the simplest scenario where neither naive conditioning nor the CAR assumption suffice to determine an updated probability distribution. This paper thus addresses a generalization of that problem to arbitrary distributions on finite outcome spaces, arbitrary sets of `messages, and (almost) arbitrary loss functions, and provides existence and characterization theorems for robust probability updating strategies. We find that for logarithmic loss, optimality is characterized by an elegant condition, which we call RCAR (reverse coarsening at random). Under certain conditions, the same condition also characterizes optimality for a much larger class of loss functions, and we obtain an objective and general answer to how one should update probabilities in the light of new information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا