ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Probability Updating

69   0   0.0 ( 0 )
 نشر من قبل Thijs Van Ommen
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses an alternative to conditioning that may be used when the probability distribution is not fully specified. It does not require any assumptions (such as CAR: coarsening at random) on the unknown distribution. The well-known Monty Hall problem is the simplest scenario where neither naive conditioning nor the CAR assumption suffice to determine an updated probability distribution. This paper thus addresses a generalization of that problem to arbitrary distributions on finite outcome spaces, arbitrary sets of `messages, and (almost) arbitrary loss functions, and provides existence and characterization theorems for robust probability updating strategies. We find that for logarithmic loss, optimality is characterized by an elegant condition, which we call RCAR (reverse coarsening at random). Under certain conditions, the same condition also characterizes optimality for a much larger class of loss functions, and we obtain an objective and general answer to how one should update probabilities in the light of new information.



قيم البحث

اقرأ أيضاً

58 - Lin Lu , Lu Jun , Li Weiyu 2021
Under the environment of big data streams, it is a common situation where the variable set of a model may change according to the condition of data streams. In this paper, we propose a homogenization strategy to represent the heterogenous models that are gradually updated in the process of data streams. With the homogenized representations, we can easily construct various online updating statistics such as parameter estimation, residual sum of squares and $F$-statistic for the heterogenous updating regression models. The main difference from the classical scenarios is that the artificial covariates in the homogenized models are not identically distributed as the natural covariates in the original models, consequently, the related theoretical properties are distinct from the classical ones. The asymptotical properties of the online updating statistics are established, which show that the new method can achieve estimation efficiency and oracle property, without any constraint on the number of data batches. The behavior of the method is further illustrated by various numerical examples from simulation experiments.
In time-to-event settings, g-computation and doubly robust estimators are based on discrete-time data. However, many biological processes are evolving continuously over time. In this paper, we extend the g-computation and the doubly robust standardis ation procedures to a continuous-time context. We compare their performance to the well-known inverse-probability-weighting (IPW) estimator for the estimation of the hazard ratio and restricted mean survival times difference, using a simulation study. Under a correct model specification, all methods are unbiased, but g-computation and the doubly robust standardisation are more efficient than inverse probability weighting. We also analyse two real-world datasets to illustrate the practical implementation of these approaches. We have updated the R package RISCA to facilitate the use of these methods and their dissemination.
We propose the double robust Lagrange multiplier (DRLM) statistic for testing hypotheses specified on the pseudo-true value of the structural parameters in the generalized method of moments. The pseudo-true value is defined as the minimizer of the po pulation continuous updating objective function and equals the true value of the structural parameter in the absence of misspecification. ocite{hhy96} The (bounding) chi-squared limiting distribution of the DRLM statistic is robust to both misspecification and weak identification of the structural parameters, hence its name. To emphasize its importance for applied work, we use the DRLM test to analyze the return on education, which is often perceived to be weakly identified, using data from Card (1995) where misspecification occurs in case of treatment heterogeneity; and to analyze the risk premia associated with risk factors proposed in Adrian et al. (2014) and He et al. (2017), where both misspecification and weak identification need to be addressed.
In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.
128 - Lu Lin , Weiyu Li , Jun Lu 2020
This paper establishes unified frameworks of renewable weighted sums (RWS) for various online updating estimations in the models with streaming data sets. The newly defined RWS lays the foundation of online updating likelihood, online updating loss f unction, online updating estimating equation and so on. The idea of RWS is intuitive and heuristic, and the algorithm is computationally simple. This paper chooses nonparametric model as an exemplary setting. The RWS applies to various types of nonparametric estimators, which include but are not limited to nonparametric likelihood, quasi-likelihood and least squares. Furthermore, the method and the theory can be extended into the models with both parameter and nonparametric function. The estimation consistency and asymptotic normality of the proposed renewable estimator are established, and the oracle property is obtained. Moreover, these properties are always satisfied, without any constraint on the number of data batches, which means that the new method is adaptive to the situation where streaming data sets arrive perpetually. The behavior of the method is further illustrated by various numerical examples from simulation experiments and real data analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا