ﻻ يوجد ملخص باللغة العربية
We show the problem of counting homomorphisms from the fundamental group of a homology $3$-sphere $M$ to a finite, non-abelian simple group $G$ is #P-complete, in the case that $G$ is fixed and $M$ is the computational input. Similarly, deciding if there is a non-trivial homomorphism is NP-complete. In both reductions, we can guarantee that every non-trivial homomorphism is a surjection. As a corollary, for any fixed integer $m ge 5$, it is NP-complete to decide whether $M$ admits a connected $m$-sheeted covering. Our construction is inspired by universality results in topological quantum computation. Given a classical reversible circuit $C$, we construct $M$ so that evaluations of $C$ with certain initialization and finalization conditions correspond to homomorphisms $pi_1(M) to G$. An intermediate state of $C$ likewise corresponds to a homomorphism $pi_1(Sigma_g) to G$, where $Sigma_g$ is a pointed Heegaard surface of $M$ of genus $g$. We analyze the action on these homomorphisms by the pointed mapping class group $text{MCG}_*(Sigma_g)$ and its Torelli subgroup $text{Tor}_*(Sigma_g)$. By results of Dunfield-Thurston, the action of $text{MCG}_*(Sigma_g)$ is as large as possible when $g$ is sufficiently large; we can pass to the Torelli group using the congruence subgroup property of $text{Sp}(2g,mathbb{Z})$. Our results can be interpreted as a sharp classical universality property of an associated combinatorial $(2+1)$-dimensional TQFT.
The triangulation complexity of a closed orientable 3-manifold is the minimal number of tetrahedra in any triangulation of the manifold. The main theorem of the paper gives upper and lower bounds on the triangulation complexity of any closed orientab
We prove that any mapping torus of a closed 3-manifold has zero simplicial volume. When the fiber is a prime 3-manifold, classification results can be applied to show vanishing of the simplicial volume, however the case of reducible fibers is by far
The Turaev-Viro invariants are a powerful family of topological invariants for distinguishing between different 3-manifolds. They are invaluable for mathematical software, but current algorithms to compute them require exponential time. The invaria
Let $G$ be a nonabelian, simple group with a nontrivial conjugacy class $C subseteq G$. Let $K$ be a diagram of an oriented knot in $S^3$, thought of as computational input. We show that for each such $G$ and $C$, the problem of counting homomorphism
We show that the problem of determining the genus of a knot in a fixed compact, orientable three-dimensional manifold lies in NP. This answers a question asked by Agol, Hass, and Thurston in 2002. Previously, this was known for rational homology three-spheres, by the work of the first author.