ﻻ يوجد ملخص باللغة العربية
Let $G$ be a nonabelian, simple group with a nontrivial conjugacy class $C subseteq G$. Let $K$ be a diagram of an oriented knot in $S^3$, thought of as computational input. We show that for each such $G$ and $C$, the problem of counting homomorphisms $pi_1(S^3setminus K) to G$ that send meridians of $K$ to $C$ is almost parsimoniously $mathsf{#P}$-complete. This work is a sequel to a previous result by the authors that counting homomorphisms from fundamental groups of integer homology 3-spheres to $G$ is almost parsimoniously $mathsf{#P}$-complete. Where we previously used mapping class groups actions on closed, unmarked surfaces, we now use braid group actions.
We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that
It is shown that every knot or link is the set of complex tangents of a 3-sphere smoothly embedded in the three-dimensional complex space. We show in fact that a one-dimensional submanifold of a closed orientable 3-manifold can be realised as the set
Quandle coloring quivers are directed graph-valued invariants of oriented knots and links, defined using a choice of finite quandle $X$ and set $Ssubsetmathrm{Hom}(X,X)$ of endomorphisms. From a quandle coloring quiver, a polynomial knot invariant kn
We prove the equivalence of the invariants EH(L) and LOSS-(L) for oriented Legendrian knots L in the 3-sphere equipped with the standard contact structure, partially extending a previous result by Stipsicz and Vertesi. In the course of the proof we r
We extend the quandle cocycle invariant to oriented singular knots and links using algebraic structures called emph{oriented singquandles} and assigning weight functions at both regular and singular crossings. This invariant coincides with the classi