ﻻ يوجد ملخص باللغة العربية
The interaction of organic molecules and molecular aggregates with electromagnetic fields that are strongly confined inside optical cavities within nanoscale volumes, has allowed the observation of exotic quantum regimes of light-matter interaction at room temperature, for a wide variety of cavity materials and geometries. Understanding the universal features of such organic cavities represents a significant challenge for theoretical modelling, as experiments show that these systems are characterized by an intricate competition between coherent and dissipative processes involving entangled nuclear, electronic and photonic degrees of freedom. In this review, we discuss a new theoretical framework that can successfully describe organic cavities under strong light-matter coupling. The theory combines standard concepts in chemical physics and quantum optics to provide a microscopic description of vibronic organic polaritons that is fully consistent with available experiments, and yet is profoundly different from the common view of organic polaritons. We show that by introducing a new class of vibronic polariton wave functions with a photonic component that is dressed by intramolecular vibrations, the new theory can offer a consistent solution to some of the long-standing puzzles in the interpretation of organic cavity photoluminescence. Throughout this review, we confront the predictions of the model with spectroscopic observations, and describe the conditions under which the theory reduces to previous approaches. We finally discuss possible extensions of the theory to account for realistic complexities of organic cavities such spatial inhomogeneities and the multi-mode nature of confined electromagnetic fields.
We propose an all-optical scheme to control the photon statistics using hybrid quantum plasmonic system. With the aid of dressed states assisted quantum interference effects, it is shown that the photon correlations of a signal field can be continuou
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are well-established techniques that provide valuable information in a diverse set of disciplines but are currently limited to macroscopic sample volumes. Here we demonstrate nanos
We report theoretical studies of adiabatic population transfer using dressed spin states. Quantum optimal control using the algorithm of Chopped Random Basis (CRAB) has been implemented in a negatively charged diamond nitrogen vacancy center that is
Hybrid molecular-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing or quantum control at the nanoscale. In this work, we investigate the strong coupling regime and explicitly describe the hybridiz
We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of a closed waveguide, in which photon wavenumbers and frequencies are discretized, and characterize the stable states in which one excitation is