ﻻ يوجد ملخص باللغة العربية
We propose an all-optical scheme to control the photon statistics using hybrid quantum plasmonic system. With the aid of dressed states assisted quantum interference effects, it is shown that the photon correlations of a signal field can be continuously modulated from bunching to antibunching under the control of a pump field. Apart from the exact multimode model, a single-mode model and an analytical treatment are also provided to help us identify the roles of multimode coupling and quantum interference between probability amplitudes. The proposed scheme, in contrast to the cavity quantum electrodynamics methods, works well even in the bad cavity limit. These findings suggest that this composite system provides a feasible nanophotonic platform for active modulation of photon statistics and for future quantum devices.
The interaction of organic molecules and molecular aggregates with electromagnetic fields that are strongly confined inside optical cavities within nanoscale volumes, has allowed the observation of exotic quantum regimes of light-matter interaction a
We show that it is possible to generate a novel single-photon fringe pattern by using two spatially separated identical bi-photon sources. The fringes are similar to the ones observed in a Michelson interferometer and possess certain remarkable prope
We report theoretical studies of adiabatic population transfer using dressed spin states. Quantum optimal control using the algorithm of Chopped Random Basis (CRAB) has been implemented in a negatively charged diamond nitrogen vacancy center that is
Quantum discord quantifies non-classical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whol
We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of a closed waveguide, in which photon wavenumbers and frequencies are discretized, and characterize the stable states in which one excitation is