ترغب بنشر مسار تعليمي؟ اضغط هنا

Dressed states of a quantum emitter strongly coupled to a metal nanoparticle

78   0   0.0 ( 0 )
 نشر من قبل G\\'erard Colas des Francs
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid molecular-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing or quantum control at the nanoscale. In this work, we investigate the strong coupling regime and explicitly describe the hybridization between the localized plasmons of a metal nanoparticle and the excited state of a quantum emitter, offering a simple and precise understanding of the energy exchange in full analogy with cavity quantum electrodynamics treatment and dressed atom picture. Both near field emission and far field radiation are discussed, revealing the richness of such optical nanosources.

قيم البحث

اقرأ أيضاً

We study theoretically the optical response of a nanohybrid comprising a symmetric quantum dimer emitter coupled to a metal nanoparticle (MNP). The interactions between the exitonic transitions in the dimer and the plasmons in the MNP lead to novel e ffects in the composites input-output characteristics for the light intensity and the absorption spectrum, which we study in the linear and nonlinear regimes. We fnd that the exciton-plasmon hybridization leads to optical bistability and hysteresis for the one-exciton transition and enhancement of excitation for the two-exciton transition. The latter leads to a signifcant decrease of the field strength needed to saturate the system. In the linear regime, the absortion spectrum has a dispersive (Fano-like) line shape. The spectral position and shape of this spectrum depend on the detuning of the dimers one-exciton resonance relative to the plasmon resonance. Upon increasing the applied field intensity to the nonlinear regime, the Fano-like singularities in the absorption spectra are smeared and they disappear due to the saturation of the dimer, which leads to the MNP dominating the spectrum. The above effects, for which we provide physical explanations, allow one to tailor the Fano-like shape of the absorption spectrum, by changing either the detuning or the input power.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant um dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of a closed waveguide, in which photon wavenumbers and frequencies are discretized, and characterize the stable states in which one excitation is steadily shared between the field and the emitters. We unearth finite-size effects in the field-emitter interactions and identify a family of dressed states, that represent the forerunners of bound states in the continuum in the limit of an infinite waveguide. We finally consider the potential interest of such states for applications in the field of quantum information.
We present an overview of the framework of macroscopic quantum electrodynamics from a quantum nanophotonics perspective. Particularly, we focus our attention on three aspects of the theory which are crucial for the description of quantum optical phen omena in nanophotonic structures. First, we review the light-matter interaction Hamiltonian itself, with special emphasis on its gauge independence and the minimal and multipolar coupling schemes. Second, we discuss the treatment of the external pumping of quantum-optical systems by classical electromagnetic fields. Third, we introduce an exact, complete and minimal basis for the field quantization in multi-emitter configurations, which is based on the so-called emitter-centered modes. Finally, we illustrate this quantization approach in a particular hybrid metallodielectric geometry: two quantum emitters placed in the vicinity of a dimer of Ag nanospheres embedded in a SiN microdisk.
Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon in terface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا