ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of pairing in the magnetic excitation spectrum of strongly correlated ladders

371   0   0.0 ( 0 )
 نشر من قبل Alberto Nocera
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the Density Matrix Renormalization Group technique, we calculate the dynamical spin structure factor $S({bf k},omega)$ of a generalized $t-U-J$ Hubbard model away from half-filling in a two-leg ladder geometry. The addition of $J$ enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength, that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of $(pi,pi)$. In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave-vector $k_{rung}=0$ does not change substantially with doping where pairing dominates, and thus plays a minor role. We discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one dimensional magnetic materials can be measured, and also address implications for recent resonant inelastic X-ray scattering experiments.



قيم البحث

اقرأ أيضاً

The multielectron LDA+GTB approach has been developed to calculate electronic structure of strongly correlated cuprates. At low energies the effective Hamiltonian of the $t - t - t - {t_ bot } - {J^ * } - {J_ bot }$-model has been derived with parame ters coming from the ab initio calculation for LSCO. The electronic structure of LSCO has been calculated self-consistently with the short-range antiferromagnetic order for various doping level. Two Lifshitz-type quantum phase transitions with Fermi surface topology changes have been found at dopings $x_{c1}=0.15$ and $x_{c2}=0.24$. Its effect on normal and superconducting properties has been calculated. The interatomic exchange parameter and its pressure dependence has been calculated within LDA+GTB scheme. The magnetic mechanisms of d-wave pairing induced by static and dynamical spin correlations are discussed. Simultaneous treatment of magnetic and phonon pairing results in the conclusion that both contributions are of the same order. For two layer cuprates like YBCO the interlayer hopping and exchange effects on the electronic structure and doping dependence of $T_c$ is discussed as well as the Coulomb interaction induced mechanism of pairing.
156 - M. Civelli 2009
We study the dynamics of the Cooper pairing across the T=0 phase diagram of the two-dimensional Hubbard Model, relevant for high-temperature superconductors, using a cluster extension of dynamical mean field theory. We find that the superconducting p airing function evolves from an unconventional form in the over-doped region into a more conventional boson-mediated retarded form in the under-doped region of the phase diagram. The boson, however, promotes the rise of a pseudo-gap in the electron density of states rather than a superconducting gap as in the standard theory of superconductivity. We discuss our results in terms of Mott-related phenomena, and we show that they can be observed in tunneling experiments.
The pairing mechanism in A$_3$C$_{60}$ is investigated by studying the properties of a three-orbital Hubbard model with antiferromagnetic Hund coupling in the normal and superconducting phase. Local orbital fluctuations are shown to be substantially enhanced in the superconducting state, with a fluctuation energy scale that matches the low-energy peak in the spectral weight of the order parameter. Our results demonstrate that local orbital fluctuations provide the pairing glue in strongly correlated fulleride superconductors and support the spin/orbital freezing theory of unconventional superconductivity. They are also consistent with the experimentally observed universal relation between the gap energy and local susceptibility in a broad range of unconventional superconductors.
107 - S. Raymond , W. Knafo , G. Knebel 2021
We investigate the spin dynamics in the superconducting phase of UTe$_{2}$ by triple-axis inelastic neutron scattering on a single crystal sample. At the wave-vector $bf{k_1}$=(0, 0.57, 0), where the normal state antiferromagnetic correlations are pe aked, a modification of the excitation spectrum is evidenced, on crossing the superconducting transition, with a reduction of the relaxation rate together with the development of an inelastic peak at $Omega$ $approx$ 1 meV. The low dimensional nature and the the $a$-axis polarization of the fluctuations, that characterise the normal state, are essentially maintained below $T_{sc}$. The high ratio $Omega/k_{B}T_{sc}$ $approx$ 7.2 contrasts with the most common behaviour in heavy fermion superconductors.
We consider the effects of Umklapp processes in doped two-leg fermionic ladders. These may emerge either at special band fillings or as a result of the presence of external periodic potentials. We show that such Umklapp processes can lead to profound changes of physical properties and in particular stabilize pair-density wave phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا