ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional Pairing from Local Orbital Fluctuations in Strongly Correlated A$_3$C$_{60}$

93   0   0.0 ( 0 )
 نشر من قبل Changming Yue Doctor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pairing mechanism in A$_3$C$_{60}$ is investigated by studying the properties of a three-orbital Hubbard model with antiferromagnetic Hund coupling in the normal and superconducting phase. Local orbital fluctuations are shown to be substantially enhanced in the superconducting state, with a fluctuation energy scale that matches the low-energy peak in the spectral weight of the order parameter. Our results demonstrate that local orbital fluctuations provide the pairing glue in strongly correlated fulleride superconductors and support the spin/orbital freezing theory of unconventional superconductivity. They are also consistent with the experimentally observed universal relation between the gap energy and local susceptibility in a broad range of unconventional superconductors.



قيم البحث

اقرأ أيضاً

Long after its discovery superconductivity in alkali fullerides A$_3$C$_{60}$ still challenges conventional wisdom. The freshest inroad in such ever-surprising physics is the behaviour under intense infrared (IR) excitation. Signatures attributable t o a transient superconducting state extending up to temperatures ten times higher than the equilibrium $T_csim$ 20 K have been discovered in K$_3$C$_{60}$ after ultra-short pulsed IR irradiation -- an effect which still appears as remarkable as mysterious. Motivated by the observation that the phenomenon is observed in a broad pumping frequency range that coincides with the mid-infrared electronic absorption peak still of unclear origin, rather than to TO phonons as has been proposed, we advance here a radically new mechanism. First, we argue that this broad absorption peak represents a super-exciton involving the promotion of one electron from the $t_{1u}$ half-filled state to a higher-energy empty $t_{1g}$ state, dramatically lowered in energy by the large dipole-dipole interaction acting in conjunction with Jahn Teller effect within the enormously degenerate manifold of $big(t_{1u}big)^2big(t_{1g}big)^1$ states. Both long-lived and entropy-rich because they are triplets, the IR-induced excitons act as a sort of cooling mechanism that permits transient superconductive signals to persist up to much larger temperatures.
The multielectron LDA+GTB approach has been developed to calculate electronic structure of strongly correlated cuprates. At low energies the effective Hamiltonian of the $t - t - t - {t_ bot } - {J^ * } - {J_ bot }$-model has been derived with parame ters coming from the ab initio calculation for LSCO. The electronic structure of LSCO has been calculated self-consistently with the short-range antiferromagnetic order for various doping level. Two Lifshitz-type quantum phase transitions with Fermi surface topology changes have been found at dopings $x_{c1}=0.15$ and $x_{c2}=0.24$. Its effect on normal and superconducting properties has been calculated. The interatomic exchange parameter and its pressure dependence has been calculated within LDA+GTB scheme. The magnetic mechanisms of d-wave pairing induced by static and dynamical spin correlations are discussed. Simultaneous treatment of magnetic and phonon pairing results in the conclusion that both contributions are of the same order. For two layer cuprates like YBCO the interlayer hopping and exchange effects on the electronic structure and doping dependence of $T_c$ is discussed as well as the Coulomb interaction induced mechanism of pairing.
Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the Density Matrix Renormalization Group technique, we calculate the dynamical spin structure factor $S({bf k},omega)$ of a generalized $t-U-J$ Hubbard model away from half-filling in a two-leg ladder geometry. The addition of $J$ enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength, that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of $(pi,pi)$. In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave-vector $k_{rung}=0$ does not change substantially with doping where pairing dominates, and thus plays a minor role. We discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one dimensional magnetic materials can be measured, and also address implications for recent resonant inelastic X-ray scattering experiments.
144 - M. Civelli 2009
We study the dynamics of the Cooper pairing across the T=0 phase diagram of the two-dimensional Hubbard Model, relevant for high-temperature superconductors, using a cluster extension of dynamical mean field theory. We find that the superconducting p airing function evolves from an unconventional form in the over-doped region into a more conventional boson-mediated retarded form in the under-doped region of the phase diagram. The boson, however, promotes the rise of a pseudo-gap in the electron density of states rather than a superconducting gap as in the standard theory of superconductivity. We discuss our results in terms of Mott-related phenomena, and we show that they can be observed in tunneling experiments.
We rigorously prove that an extended Hubbard model with attraction in two dimensions has an unconventional pairing ground state for any electron filling. The anisotropic spin-0 or anisotropic spin-1 pairing symmetry is realized, depending on a phase parameter characterizing the type of local attractive interactions. In both cases the ground state is unique. It is also shown that in a special case, where there are no electron hopping terms, the ground state has Ising-type Neel order at half-filling, when on-site repulsion is furthermore added. Physical applications are mentioned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا