ﻻ يوجد ملخص باللغة العربية
The pairing mechanism in A$_3$C$_{60}$ is investigated by studying the properties of a three-orbital Hubbard model with antiferromagnetic Hund coupling in the normal and superconducting phase. Local orbital fluctuations are shown to be substantially enhanced in the superconducting state, with a fluctuation energy scale that matches the low-energy peak in the spectral weight of the order parameter. Our results demonstrate that local orbital fluctuations provide the pairing glue in strongly correlated fulleride superconductors and support the spin/orbital freezing theory of unconventional superconductivity. They are also consistent with the experimentally observed universal relation between the gap energy and local susceptibility in a broad range of unconventional superconductors.
Long after its discovery superconductivity in alkali fullerides A$_3$C$_{60}$ still challenges conventional wisdom. The freshest inroad in such ever-surprising physics is the behaviour under intense infrared (IR) excitation. Signatures attributable t
The multielectron LDA+GTB approach has been developed to calculate electronic structure of strongly correlated cuprates. At low energies the effective Hamiltonian of the $t - t - t - {t_ bot } - {J^ * } - {J_ bot }$-model has been derived with parame
Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of
We study the dynamics of the Cooper pairing across the T=0 phase diagram of the two-dimensional Hubbard Model, relevant for high-temperature superconductors, using a cluster extension of dynamical mean field theory. We find that the superconducting p
We rigorously prove that an extended Hubbard model with attraction in two dimensions has an unconventional pairing ground state for any electron filling. The anisotropic spin-0 or anisotropic spin-1 pairing symmetry is realized, depending on a phase