ﻻ يوجد ملخص باللغة العربية
Weyl type-II fermions are massless quasiparticles that obey the Weyl equation and which are predicted to occur at the boundary between electron- and hole-pockets in certain semi-metals, i.e. the (W,Mo)(Te,P)$_2$ compounds. Here, we present a study of the Fermi-surface of WP$_2$ emph{via} the Shubnikov-de Haas (SdH) effect. Compared to other semi-metals WP$_2$ exhibits a very low residual resistivity, i.e. $rho_0 simeq 10$ n$Omega$cm, which leads to perhaps the largest non-saturating magneto-resistivity $(rho(H))$ reported for any compound. For the samples displaying the smallest $rho_0$, $rho(H)$ is observed to increase by a factor of $2.5 times 10^{7}$ $%$ under $mu_{0}H = 35$ T at $T = 0.35$ K. The angular dependence of the SdH frequencies is found to be in very good agreement with the first-principle calculations when the electron- and hole-bands are slightly shifted with respect to the Fermi level, thus supporting the existence of underlying Weyl type-II points in WP$_2$.
The electronic structure of WTe$_2$ and orthorhombic $gamma-$MoTe$_2$, are claimed to contain pairs of Weyl type-II points. A series of ARPES experiments claim a broad agreement with these predictions. We synthesized single-crystals of MoTe$_2$ throu
Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs violates Lorentz invariance and the Weyl cones in the momentum space are tilted. Since it was p
Recently, a new group of layered transition-metal tetra-chalcogenides were proposed, via first principles calculations, to correspond to a new family of Weyl type-II semimetals with promising topological properties in the bulk as well as in the monol
We perform ultrahigh resolution angle-resolved photoemission experiments at a temperature T=0.8 K on the type-II Weyl semimetal candidate WTe$_{2}$. We find a surface Fermi arc connecting the bulk electron and hole pockets on the (001) surface. Our r
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fer