ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range entanglement for spin qubits via quantum Hall edge modes

66   0   0.0 ( 0 )
 نشر من قبل Stephen D. Bartlett
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and analyse a scheme for performing a long-range entangling gate for qubits encoded in electron spins trapped in semiconductor quantum dots. Our coupling makes use of an electrostatic interaction between the state-dependent charge configurations of a singlet-triplet qubit and the edge modes of a quantum Hall droplet. We show that distant singlet-triplet qubits can be selectively coupled, with gate times that can be much shorter than qubit dephasing times and faster than decoherence due to coupling to the edge modes. Based on parameters from recent experiments, we argue that fidelities above 99% could in principle be achieved for a two-qubit entangling gate taking as little as 20 ns.



قيم البحث

اقرأ أيضاً

Conductance of the edge modes as well as conductance across the co-propagating edge modes around the u = 4/3, 5/3 and 2 quantum Hall states are measured by individually exciting the modes. Temperature dependent equilibration rates of the outer unity conductance edge mode are presented for different filling fractions. We find that the equilibration rate of the outer unity conductance mode at u = 2 is higher and more temperature sensitive compared to the mode at fractional filling 5/3 and 4/3. At lowest temperature, equilibration length of the outer unity conductance mode tends to saturate with lowering filling fraction u by increasing magnetic field B. We speculate this saturating nature of equilibration length is arising from an interplay of Coulomb correlation and spin orthogonality.
We theoretically investigate the dynamics of two spin qubits interacting with a magnetic medium. A systematic theoretical framework for this qubit-magnet hybrid system is developed in terms of the equilibrium properties of the magnetic medium. Our pa rticular focus is on the induced dissipative coupling between the spin qubits. In contrast to the conventional wisdom that dissipation is detrimental to quantum effects, here we show that a sizable long-lifetime entanglement can be established via a dissipative environment, in the absence of any coherent coupling. Moreover, we demonstrate that maximally-entangled two-qubit states (Bell states) can be achieved in this scheme when complemented by proper postselection. In this situation, there is a dynamical phase transition separated by an exceptional point. The resultant Bell state is robust against weak random perturbations and does not require the preparation of a particular initial state. Our study may find applications in quantum information science, quantum spintronics, and for sensing of nonlocal quantum correlations.
284 - Yue Ban , Xi Chen , 2018
Rapid and efficient preparation, manipulation and transfer of quantum states through an array of quantum dots (QDs) is a demanding requisite task for quantum information processing and quantum computation in solid-state physics. Conventional adiabati c protocols, as coherent transfer by adiabatic passage (CTAP) and its variations, provide slow transfer prone to decoherence, which could lower the fidelity to some extent. To achieve the robustness against decoherence, we propose a protocol of speeding up the adiabatic charge transfer in multi-QD systems, sharing the concept of Shortcuts to Adiabaticity (STA). We first apply the STA techniques, including the counterdiabatic driving and inverse engineering, to speed up the direct (long range) transfer between edge dots in triple QDs. Then, we extend our analysis to a multi-dot system. We show how by implementing the modified pulses, fast adiabatic-like charge transport between the outer dots can be eventually achieved without populating intermediate dots. We discuss as well the dependence of the transfer fidelity on the operation time in the presence of dephasing. The proposed protocols for accelerating adiabatic charge transfer directly between the outer dots in a QD array offers a robust mechanism for quantum information processing, by minimizing decoherence and relaxation processes.
In this paper, we review recent developments in the emerging field of electron quantum optics, stressing analogies and differences with the usual case of photon quantum optics. Electron quantum optics aims at preparing, manipulating and measuring coh erent single electron excitations propagating in ballistic conductors such as the edge channels of a 2DEG in the integer quantum Hall regime. Because of the Fermi statistics and the presence of strong interactions, electron quantum optics exhibits new features compared to the usual case of photon quantum optics. In particular, it provides a natural playground to understand decoherence and relaxation effects in quantum transport.
Spin-orbit qubit (SOQ) is the dressed spin by the orbital degree of freedom through a strong spin-orbit coupling. We show that Coulomb interaction between two electrons in quantum dots located separately in two nanowires can efficiently induce quantu m entanglement between two SOQs. The physical mechanism to achieve such quantum entanglement is based on the feasibility of the SOQ responding to the external electric field via an intrinsic electric dipole spin resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا