ﻻ يوجد ملخص باللغة العربية
Conductance of the edge modes as well as conductance across the co-propagating edge modes around the u = 4/3, 5/3 and 2 quantum Hall states are measured by individually exciting the modes. Temperature dependent equilibration rates of the outer unity conductance edge mode are presented for different filling fractions. We find that the equilibration rate of the outer unity conductance mode at u = 2 is higher and more temperature sensitive compared to the mode at fractional filling 5/3 and 4/3. At lowest temperature, equilibration length of the outer unity conductance mode tends to saturate with lowering filling fraction u by increasing magnetic field B. We speculate this saturating nature of equilibration length is arising from an interplay of Coulomb correlation and spin orthogonality.
Fractional conductance is measured by partitioning $ u = 1$ edge state using gate-tunable fractional quantum Hall (FQH) liquids of filling 1/3 or 2/3 for current injection and detection. We observe two sets of FQH plateaus 1/9, 2/9, 4/9 and 1/6, 1/3,
We study electron transport through a multichannel fractional quantum Hall edge in the presence of both interchannel interaction and random tunneling between channels, with emphasis on the role of contacts. The prime example in our discussion is the
We propose and analyse a scheme for performing a long-range entangling gate for qubits encoded in electron spins trapped in semiconductor quantum dots. Our coupling makes use of an electrostatic interaction between the state-dependent charge configur
A monolayer of WTe$_2$ has been shown to display quantum spin Hall (QSH) edge modes persisting up to 100~K in transport experiments. Based on density-functional theory calculations and symmetry-based model building including the role of correlations
We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evol