ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial structure of correlations around a quantum impurity at the edge of a two-dimensional topological insulator

111   0   0.0 ( 0 )
 نشر من قبل George B. Martins
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew Allerdt




اسأل ChatGPT حول البحث

We calculate exact zero-temperature real space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicene-like nanoribbon. Using a Lanczos transformation [Phys. Rev. B 91, 085101 (2015)] and the density matrix renormalization group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons, and that the edges scatter from the impurity and snake or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.



قيم البحث

اقرأ أيضاً

Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter including various excitations of collective modes predicted in particl e physics, such as Majorana fermions and axions. According to theoretical predictions, a topological insulating state can emerge from not only a weakly interacting system with strong spin-orbit coupling, but also in insulators driven by strong electron correlations. The Kondo insulator compound SmB6 is an ideal candidate for realizing this exotic state of matter, with hybridization between itinerant conduction electrons and localized $f$-electrons driving an insulating gap and metallic surface states at low temperatures. Here we exploit the existence of surface ferromagnetism in SmB6 to investigate the topological nature of metallic surface states by studying magnetotransport properties at very low temperatures. We find evidence of one-dimensional surface transport with a quantized conductance value of $e^2/h$ originating from the chiral edge channels of ferromagnetic domain walls, providing strong evidence that topologically non-trivial surface states exist in SmB6.
Recently topological superconducting states has attracted a lot of interest. In this work, we consider a topo- logical superconductor with $Z_2$ topological mirror order [1] and s$pm$-wave superconducting pairing symmetry, within a two-orbital model originally designed for iron-based superconductivity [2]. We predict the existence of gapless edge states. We also study the local electronic structure around an adsorbed interstitial magnetic impurity in the system, and find the existence of low-energy in-gap bound states even with a weak spin polar- ization on the impurity. We also discuss the relevance of our results to the recent STM experiment on Fe(Te,Se) compound with adsorbed Fe impurity [3], for which our density functional calculations show the Fe impurity is spin polarized.
Josephson weak links made of two-dimensional topological insulators (TIs) exhibit magnetic oscillations of the supercurrent that are reminiscent of those in superconducting quantum interference devices (SQUIDs). We propose a microscopic theory of thi s effect that goes beyond the approaches based on the standard SQUID theory. For long junctions we find a temperature-driven crossover from Phi_0-periodic SQUID-like oscillations to a 2 Phi_0-quasiperiodic interference pattern with different peaks at even and odd values of the magnetic flux quantum Phi_0=ch/2e. This behavior is absent in short junctions where the main interference signal occurs at zero magnetic field. Both types of interference patterns reveal gapless (protected) Andreev bound states. We show, however, that the usual sawtooth current-flux relationship is profoundly modified by a Doppler-like effect of the shielding current which has been overlooked previously. Our findings may explain recently observed even-odd interference patterns in InAs/GaSb-based TI Josephson junctions and uncover unexplored operation regimes of nano-SQUIDs.
The Lieb lattice possesses three bands and with intrinsic spin orbit coupling $lambda$, supports topologically non-trivial band insulating phases. At half filling the lower band is fully filled, while the upper band is empty. The chemical potential l ies in the flat band (FB) located at the middle of the spectrum, thereby stabilizing a flat band insulator. At this filling, we introduce on-site Hubbard interaction $U$ on all sites. Within a slave rotor mean field theory we show that, in spite of the singular effect of interaction on the FB, the three bands remain stable up to a fairly large critical correlation strength ($U_{crit}$), creating a correlated flat band insulator. Beyond $U_{crit}$, there is a sudden transition to a Mott insulating state, where the FB is destroyed due to complete transfer of spectral weight from the FB to the upper and lower bands. We show that all the correlation driven insulating phases host edge modes with linearly dispersing bands along with a FB passing through the Dirac point, exhibiting that the topological nature of the bulk band structure remains intact in presence of strong correlation. Furthermore, in the limiting case of $U$ introduced only on one sublattice where $lambda=0$, we show that the Lieb lattice can support mixed edge modes containing contributions from both spinons and electrons, in contrast to purely spinon edge modes arising in the topological Mott insulator.
We report the observation of a re-entrant insulator--metal--insulator transition at B=0 in a two dimensional (2D) hole gas in GaAs at temperatures down to 30mK. At the lowest carrier densities the holes are strongly localised. As the carrier density is increased a metallic phase forms, with a clear transition at sigma = ~5e^2/h. Further increasing the density weakens the metallic behaviour, and eventually leads to the formation of a second insulating state for sigma > ~50e^2/h. In the limit of high carrier densities, where k_F.l is large and r_s is small, we thus recover the results of previous work on weakly interacting systems showing the absence of a metallic state in 2D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا