ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context

108   0   0.0 ( 0 )
 نشر من قبل Shyam Upadhyay
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Word embeddings, which represent a word as a point in a vector space, have become ubiquitous to several NLP tasks. A recent line of work uses bilingual (two languages) corpora to learn a different vector for each sense of a word, by exploiting crosslingual signals to aid sense identification. We present a multi-view Bayesian non-parametric algorithm which improves multi-sense word embeddings by (a) using multilingual (i.e., more than two languages) corpora to significantly improve sense embeddings beyond what one achieves with bilingual information, and (b) uses a principled approach to learn a variable number of senses per word, in a data-driven manner. Ours is the first approach with the ability to leverage multilingual corpora efficiently for multi-sense representation learning. Experiments show that multilingual training significantly improves performance over monolingual and bilingual training, by allowing us to combine different parallel corpora to leverage multilingual context. Multilingual training yields comparable performance to a state of the art mono-lingual model trained on five times more training data.



قيم البحث

اقرأ أيضاً

We present a simple yet effective approach for learning word sense embeddings. In contrast to existing techniques, which either directly learn sense representations from corpora or rely on sense inventories from lexical resources, our approach can in duce a sense inventory from existing word embeddings via clustering of ego-networks of related words. An integrated WSD mechanism enables labeling of words in context with learned sense vectors, which gives rise to downstream applications. Experiments show that the performance of our method is comparable to state-of-the-art unsupervised WSD systems.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavail able for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
Crosslingual word embeddings represent lexical items from different languages in the same vector space, enabling transfer of NLP tools. However, previous attempts had expensive resource requirements, difficulty incorporating monolingual data or were unable to handle polysemy. We address these drawbacks in our method which takes advantage of a high coverage dictionary in an EM style training algorithm over monolingual corpora in two languages. Our model achieves state-of-the-art performance on bilingual lexicon induction task exceeding models using large bilingual corpora, and competitive results on the monolingual word similarity and cross-lingual document classification task.
We propose a multilingual model to recognize Big Five Personality traits from text data in four different languages: English, Spanish, Dutch and Italian. Our analysis shows that words having a similar semantic meaning in different languages do not ne cessarily correspond to the same personality traits. Therefore, we propose a personality alignment method, GlobalTrait, which has a mapping for each trait from the source language to the target language (English), such that words that correlate positively to each trait are close together in the multilingual vector space. Using these aligned embeddings for training, we can transfer personality related training features from high-resource languages such as English to other low-resource languages, and get better multilingual results, when compared to using simple monolingual and unaligned multilingual embeddings. We achieve an average F-score increase (across all three languages except English) from 65 to 73.4 (+8.4), when comparing our monolingual model to multilingual using CNN with personality aligned embeddings. We also show relatively good performance in the regression tasks, and better classification results when evaluating our model on a separate Chinese dataset.
Word embedding is central to neural machine translation (NMT), which has attracted intensive research interest in recent years. In NMT, the source embedding plays the role of the entrance while the target embedding acts as the terminal. These layers occupy most of the model parameters for representation learning. Furthermore, they indirectly interface via a soft-attention mechanism, which makes them comparatively isolated. In this paper, we propose shared-private bilingual word embeddings, which give a closer relationship between the source and target embeddings, and which also reduce the number of model parameters. For similar source and target words, their embeddings tend to share a part of the features and they cooperatively learn these common representation units. Experiments on 5 language pairs belonging to 6 different language families and written in 5 different alphabets demonstrate that the proposed model provides a significant performance boost over the strong baselines with dramatically fewer model parameters.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا